32 research outputs found

    Using digital elevation models for morphological analysis of La Hoyada Volcanic Complex

    Get PDF
    Las formas volcánicas resultan del balance de procesos constructivos y destructivos que afectan a los edificios volcánicos, por lo tanto el estudio de los rasgos volcánicos contribuye al entendimiento de la evolución del volcanismo de una zona. El Complejo Volcánico La Hoyada (Mioceno superior-Plioceno) se encuentra en el flanco oriental de la cordillera de San Buenaventura, en la provincia de Catamarca, Argentina. Esta contribución presenta una aplicación de modelos de elevación digital para el análisis morfológico del Complejo Volcánico La Hoyada, con el objetivo de identificar y evaluar las formas volcánicas de la región, para entender la evolución de este complejo volcánico antiguo con respecto a las manifestaciones volcánicas de la zona. El análisis morfológico se realizó usando los modelos de elevación digital ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) y SRTM (Shuttle Radar Topographic Mission), además de la evaluación de imágenes SPOT. Se realizaron distintos productos derivados de los modelos de elevación digital para llevar a cabo la identificación de morfologías areales. A través del análisis de los datos se identificaron 6 dominios morfológicos, cada uno representa un volcán individual de este Complejo. La actividad tectónica de la Puna Austral y el volcanismo moderno de la zona son los factores responsables de la destrucción de estos edificios volcánicos. Los rasgos volcánicos están mejor preservados hacia el norte del complejo, por lo tanto el grado de conservación podría indicar una migración de la evolución del volcanismo de sur a norte. Esta metodología constituye una herramienta fundamental para comprender la evolución volcánica de complejos volcánicos erodados de larga duración.Volcanoes´ shapes result from constructional and destructional events; consequently, the study of volcanic features gives insight into the volcanic evolution. La Hoyada Volcanic Complex (Upper Miocene- Pliocene) is located in the eastern flank of San Buenaventura ridge, in Catamarca, Argentina. This study shows an application of digital elevation models for the volcanic area La Hoyada. The aim of this study is to examine the volcanic landforms because volcanic feature understanding of La Hoyada Volcanic Complex is an important tool for unravelling the evolution of this ancient and eroded volcanic complex. Morphological analysis of La Hoyada was performed using ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) and SRTM (Shuttle Radar Topographic Mission) Digital Elevation Models. The morphological evaluation was complemented by using high resolution images SPOT. Several products were derived from both Digital Elevation Models to identify areal morphologies. Through the evaluation of Digital Elevation Models derived data, as much as 6 morphological domains can be recognized each one representing a single volcano.Tectonic activity and modern volcanism in this area are responsible for the destruction of the volcanic edifices of La Hoyada. The partially conserved volcanic features are more distinguishable towards the north; hence, the grade of preservation could indicate that the evolution of this volcanic center was from south to north. This methodology provides a powerful tool for understanding the volcanic evolution of eroded long-lived volcanic complexes.Fil: Bustos, Emilce. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto Geonorte; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energia No Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energia No Convencional; ArgentinaFil: Arnosio, José Marcelo. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto Geonorte; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energia No Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energia No Convencional; ArgentinaFil: Norini, Gianluca. Consiglio Nazionale delle Ricerche; Itali

    Forecasting volcanic ash dispersal and coeval resuspension during the April-May 2015 Calbuco eruption

    Get PDF
    Atmospheric dispersion of volcanic ash from explosive eruptions or from subsequent fallout deposit resuspension causes a range of impacts and disruptions on human activities and ecosystems. The April-May 2015 Calbuco eruption in Chile involved eruption and resuspension activities. We overview the chronology, effects, and products resulting from these events, in order to validate an operational forecast strategy for tephra dispersal. The modelling strategy builds on coupling the meteorological Weather Research and Forecasting (WRF/ARW) model with the FALL3D dispersal model for eruptive and resuspension processes. The eruption modelling considers two distinct particle granulometries, a preliminary first guess distribution used operationally when no field data was available yet, and a refined distribution based on field measurements. Volcanological inputs were inferred from eruption reports and results from an Argentina-Chilean ash sample data network, which performed in-situ sampling during the eruption. In order to validate the modelling strategy, results were compared with satellite retrievals and ground deposit measurements. Results indicate that the WRF-FALL3D modelling system can provide reasonable forecasts in both eruption and resuspension modes, particularly when the adjusted granulometry is considered. The study also highlights the importance of having dedicated datasets of active volcanoes furnishing first-guess model inputs during the early stages of an eruption.Fil: Reckziegel, Florencia Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Bustos, Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Leonardo, Mingari. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Baez, Walter Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Villarosa, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Folch Duran, Arnau. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; EspañaFil: Collini, E.. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; ArgentinaFil: Viramonte, Jose German. Universidad Nacional de Salta; ArgentinaFil: Romero, J.. Centro de Investigación y Difusión de Volcanes de Chile; Chile. Universidad de Atacama; ChileFil: Osores, María Soledad. Comision Nacional de Actividades Espaciales; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Multi-banded pumice in the Campo de la Piedra Pómez rhyolitic ignimbrite (Southern Puna plateau): Pre-eruptive physical and chemical interactions between mafic and rhyolitic melts

    Get PDF
    The rhyolitic Campo de la Piedra Pómez ignimbrite crops out in the Southern Puna of NW Argentina and it isrelated to the youngest caldera-complex (Cerro Blanco caldera complex) of the Central Andes (73 - 4 kyr). Thepresence of rhyolitic pumice and mafic enclaves with different compositional and textural features, whichvariability can be observed within a single juvenile clast (multiple-banded pumice), characterized these deposits.The enclaves are associated with hybrid (trachydacitic) pumice and sporadic remnants of rhyolitic materialincluded in the trachydacite. To unravel the possible role of the mafic recharge as eruption trigger, the occurrenceof mixing events and the mechanisms of enclave formation, we studied the enclaves and silicic pumicematerial (petrography, whole rock analyses, mineral and glass chemistry) to decipher the magmatic interactionbetween the host rhyolitic melt and the enclave-forming magmas. Results allowed recognizing two main maficrecharge events. During the first episode, the mixing of the rhyolite with the injecting magma generated sporadicdacitic products. Mixing was favored by the relatively high temperature of both the injecting magma and therhyolitic melt, as revealed by clinopyroxene-liquid, plagioclase-liquid and two-pyroxene geothermometers(≥875 °C). The second mafic recharge event involved magma that remained confined at the bottom of thereservoir and crystallized with differential cooling rates. At the interface with the silicic host, the magmagenerated sub-millimetric mineral assemblage in which amphibole has normally zoned rims. Differently, withinthe body of the mafic intrusion, crystallization proceeded with a lower undercooling degree, generating a coarsercrystalline assemblage in which amphibole crystals do not display zoning. The convergence of different thermobarometricmodels (applied to the rhyolite, trachydacite, and enclaves) suggests that these magmas interactedat a crustal depth of ca. 2.7 Kbar, here interpreted as the base of the Campo de la Piedra Pómez rhyoliticreservoir (~10 Km b.s.l.). A time lapse occurred between the last mafic recharge and the eruptive events, wherethe felsic magma cooled down to ~800 °C and the amphibole re-equilibration took place.Fil: Bardelli, Lorenzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Arnosio, José Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Baez, Walter Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Suzaño, Nestor Omar. Universidad Nacional de Jujuy; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Becchio, Raul Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Viramonte, Jose German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Bustos, Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Bertea, Esteban Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentin

    Probabilistic Volcanic Hazard Assessment of the 22.5–28°S Segment of the Central Volcanic Zone of the Andes

    Get PDF
    Evaluation of volcanic hazards typically focusses on single eruptive centres or spatially restricted areas, such as volcanic fields. Expanding hazard assessments across wide regions (e.g., large sections of a continental margin) has rarely been attempted, due to the complexity of integrating temporal and spatial variability in tectonic and magmatic processes. In this study, we investigate new approaches to quantify the hazards of such long-term active and complex settings, using the example of the 22.5–28°S segment of the Central Volcanic Zone of the Andes. This research is based on the estimation of: 1) spatial probability of future volcanic activity (based on kernel density estimation using a new volcanic geospatial database), 2) temporal probability of future volcanic events, and 3) areas susceptible to volcanic flow and fall processes (based on computer modeling). Integrating these results, we produce a set of volcanic hazard maps. We then calculate the relative probabilities of population centres in the area being affected by any volcanic phenomenon. Touristic towns such as La Poma (Argentina), Toconao (Chile), Antofagasta de la Sierra (Argentina), Socaire (Chile), and Talabre (Chile) are exposed to the highest relative volcanic hazard. In addition, through this work we delineate five regions of high spatial probability (i.e., volcanic clusters), three of which correlate well with geophysical evidence of mid-crustal partial melt bodies. Many of the eruptive centres within these volcanic clusters have poorly known eruption histories and are recommended to be targeted for future work. We hope this contribution will be a useful approach to encourage probabilistic volcanic hazard assessments for other arc segments.Fil: Bertin, Daniel. University of Auckland; Nueva ZelandaFil: Lindsay, Jan M.. University of Auckland; Nueva ZelandaFil: Cronin, Shane J.. University of Auckland; Nueva ZelandaFil: de Silva, Shanaka L.. State University of Oregon; Estados UnidosFil: Connor, Charles B.. University of Florida; Estados UnidosFil: Caffe, Pablo Jorge. Universidad Nacional de Jujuy. Instituto de Ecorregiones Andinas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Ecorregiones Andinas; ArgentinaFil: Grosse, Pablo. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Báez, Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Bustos, Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Constantinescu, Robert. University of Florida; Estados Unido

    Eruptive styles related to the monogenetic mafic volcanism of Pasto Ventura region, southern Puna, Argentina

    Get PDF
    Uno de los rasgos más sobresalientes de la Puna Austral es el desarrollo de un volcanismo monogenético máfico durante el Neógeno-Cuaternario. Si bien existen numerosos trabajos que discuten la petrogénesis de este particular volcanismo de retroarco, los estudios enfocados en su volcanología física son escasos. En este sentido, este trabajo presenta una caracterización del volcanismo monogenético máfico de la región de Pasto Ventura, ubicada en el borde sudeste de la Puna Austral. Los resultados obtenidos indican que en la región de Pasto Ventura existe una baja densidad de centros eruptivos de pequeño volumen alineados con estructuras tectónicas regionales y una variabilidad significativa en los estilos eruptivos (efusivo, estromboliano, hawaiano, estromboliano violento y freatomagmático) y tipología de estructuras volcánicas (domos, conos de escoria, maares y anillos de tobas). La baja densidad de centros eruptivos se explica por un flujo limitado de magma desde la fuente profunda y la utilización de estructuras tectónicas, orientadas oblicuas a la dirección de compresión máxima, favorables para el ascenso de pequeños volúmenes de magma a través de la corteza superior. La variabilidad de estilos eruptivos responde a una interacción compleja de diferentes factores endógenos y exógenos. La ocurrencia de erupciones efusivas o explosivas depende de las diferencias en las velocidades de ascenso del magma, incluyendo períodos de estancamiento en la corteza superior, que a su vez controlan la eficiencia de la desgasificación y en última instancia la ocurrencia o no de fragmentación. Por otro lado, las condiciones climáticas locales más húmedas (~150 mm/año), que se relacionan con la posición geográfica de la región de Pasto Ventura en el borde oriental de la Puna, favorecen la ocurrencia de actividad freatomagmática, la que a su vez varía en función de la topografía, tipología del substrato y profundidad a la que ocurre la interacción agua-magma.One of the most outstanding features of the Southern Puna is the occurrence of a widespread monogenetic mafic volcanism during Neogene-Quaternary. Despite a number of published papers focusing on the petrogenesis of this back-arc volcanism, works aimed on its physical volcanology are scarce. This paper presents the characterization of the monogenetic mafic volcanism in the Pasto Ventura region, located in the southeast edge of the Southern Puna. The results show that in the Pasto Ventura region there is a low density of small-volume eruptive centers aligned with regional tectonic structures and a significant variability in eruptive styles (effusive, strombolian, hawaiian, violent strombolian and phreatomagmatic) and typology of volcanic structures (domes, scoria cones, maars and tuff rings). The first of these features is explained by a limited magma flow rate from the deep source and the use of favorable tectonic structures (oriented obliquely to the regional maximum compression direction) for the ascent of small volumes of magma through the upper crust. The variability of eruptive styles responds to the complex interaction of different endogenous and exogenous factors. The occurrence of effusive or explosive eruptions depends on the differences in magma ascent rates including periods of stagnation in the upper crust, which in turn control the efficiency of degassing and ultimately the occurrence of fragmentation. On the other hand, the more humid local climatic conditions (~150 mm/year), which are related to the geographical position of the Pasto Ventura region in the eastern edge of the Puna, favor the occurrence of phreatomagmatic activity. Phreatomagmatic activity also varies according to the topography, substrate typology and depth at which water-magma interaction occurs.Fil: Filipovich, Ruben Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Baez, Walter Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Bustos, Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Villagrán, Carla Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Viramonte, Jose German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentin

    Historia eruptiva del volcán Cueros de Purulla, Puna Austral

    Get PDF
    Los domos riolíticos representan fases efusivas dentro de la evolución de estructuras volcánicas poligenéticas o erupciones que construyen edificios volcánicos monogenéticos espacialmente aislados o formando parte de campos volcánicos. Sin embargo, casos particulares de domos riolíticos no asociados a volcanes poligenéticos pueden desarrollar historias eruptivas complejas, incluyendo múltiples eventos efusivos-explosivos a veces separados por periodos de reposo de miles de años. Uno de los aspectos del volcanismo Neógeno-Cuaternario de la Puna Austral menos estudiados hasta el momento corresponde a la ocurrencia de domos riolíticos aparentemente no asociados a ningún centro volcánico poligenético mayor (e.g. volcanes Cueros de Purulla y Chascón). En esta contribución se presenta una nueva cartografía y estratigrafía de detalle del volcán Cueros de Purulla junto con datos complementarios morfométricos, texturales, petrográficos y geoquímicos de las unidades cartografiadas. Los resultados obtenidos permiten definir que el volcán Cueros de Purulla constituye un complejo de domos con actividad explosiva asociada, aunque la ausencia de dataciones o indicadores de hiatus impiden definir su carácter monogenético o poligenético. Los productos del volcán Cueros de Purulla son riolíticos pobres en cristales. La evolución del volcán Cueros de Purulla se dividió en 3 fases: i) fase efusiva pre-colapso representada por domos y coulées, ii) fase de colapso-explosiva representada por un depósito de avalancha de detritos y depósitos piroclásticos de flujo y caída y iii) fase efusiva de post-colapso representada por domos y coulées.Fil: Bertea, Esteban Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Báez, Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Bustos, Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Filipovich, Ruben Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Bardelli, Lorenzo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto Geonorte; ArgentinaFil: Arnosio, José Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Villagrán, Carla Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Sommer, Carlos Augusto. Universidade Federal do Rio Grande do Sul; BrasilFil: Alfaro Ortega, Blanca Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentin

    The helium and carbon isotope characteristics of the Andean Convergent Margin

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Barry, P. H., De Moor, J. M., Chiodi, A., Aguilera, F., Hudak, M. R., Bekaert, D. V., Turner, S. J., Curtice, J., Seltzer, A. M., Jessen, G. L., Osses, E., Blamey, J. M., Amenabar, M. J., Selci, M., Cascone, M., Bastianoni, A., Nakagawa, M., Filipovich, R., Bustos, E., Schrenk, M. O. , Buongiorno, J., Ramírez, C. J., Rogers, T. J., Lloyd, K. G. & Giovannelli, D. The helium and carbon isotope characteristics of the Andean Convergent Margin. Frontiers in Earth Science, 10, (2022): 897267, https://doi.org/10.3389/feart.2022.897267.Subduction zones represent the interface between Earth’s interior (crust and mantle) and exterior (atmosphere and oceans), where carbon and other volatile elements are actively cycled between Earth reservoirs by plate tectonics. Helium is a sensitive tracer of volatile sources and can be used to deconvolute mantle and crustal sources in arcs; however it is not thought to be recycled into the mantle by subduction processes. In contrast, carbon is readily recycled, mostly in the form of carbon-rich sediments, and can thus be used to understand volatile delivery via subduction. Further, carbon is chemically-reactive and isotope fractionation can be used to determine the main processes controlling volatile movements within arc systems. Here, we report helium isotope and abundance data for 42 deeply-sourced fluid and gas samples from the Central Volcanic Zone (CVZ) and Southern Volcanic Zone (SVZ) of the Andean Convergent Margin (ACM). Data are used to assess the influence of subduction parameters (e.g., crustal thickness, subduction inputs, and convergence rate) on the composition of volatiles in surface volcanic fluid and gas emissions. He isotopes from the CVZ backarc range from 0.1 to 2.6 RA (n = 23), with the highest values in the Puna and the lowest in the Sub-Andean foreland fold-and-thrust belt. Atmosphere-corrected He isotopes from the SVZ range from 0.7 to 5.0 RA (n = 19). Taken together, these data reveal a clear southeastward increase in 3He/4He, with the highest values (in the SVZ) falling below the nominal range associated with pure upper mantle helium (8 ± 1 RA), approaching the mean He isotope value for arc gases of (5.4 ± 1.9 RA). Notably, the lowest values are found in the CVZ, suggesting more significant crustal inputs (i.e., assimilation of 4He) to the helium budget. The crustal thickness in the CVZ (up to 70 km) is significantly larger than in the SVZ, where it is just ∼40 km. We suggest that crustal thickness exerts a primary control on the extent of fluid-crust interaction, as helium and other volatiles rise through the upper plate in the ACM. We also report carbon isotopes from (n = 11) sites in the CVZ, where δ13C varies between −15.3‰ and −1.2‰ [vs. Vienna Pee Dee Belemnite (VPDB)] and CO2/3He values that vary by over two orders of magnitude (6.9 × 108–1.7 × 1011). In the SVZ, carbon isotope ratios are also reported from (n = 13) sites and vary between −17.2‰ and −4.1‰. CO2/3He values vary by over four orders of magnitude (4.7 × 107–1.7 × 1012). Low δ13C and CO2/3He values are consistent with CO2 removal (e.g., calcite precipitation and gas dissolution) in shallow hydrothermal systems. Carbon isotope fractionation modeling suggests that calcite precipitation occurs at temperatures coincident with the upper temperature limit for life (122°C), suggesting that biology may play a role in C-He systematics of arc-related volcanic fluid and gas emissions.This work was principally supported by the NSF-FRES award 2121637 to PB, KL, and JM. Field work was also supported by award G-2016-7206 from the Alfred P. Sloan Foundation and the Deep Carbon Observatory to PB, KL, DG, and JM. Additional support came from The National Fund for Scientific and Technological Development of Chile (FONDECYT) Grant 11191138 (The National Research and Development Agency of Chile, ANID Chile), and COPAS COASTAL ANID FB210021 to GJ. DG was partially supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program Grant Agreement No. 948972—COEVOLVE—ERC-2020-STG

    The Helium and Carbon Isotope Characteristics of the Andean Convergent Margin

    Get PDF
    Subduction zones represent the interface between Earth’s interior (crust and mantle) and exterior (atmosphere and oceans), where carbon and other volatile elements are actively cycled between Earth reservoirs by plate tectonics. Helium is a sensitive tracer of volatile sources and can be used to deconvolute mantle and crustal sources in arcs; however it is not thought to be recycled into the mantle by subduction processes. In contrast, carbon is readily recycled, mostly in the form of carbon-rich sediments, and can thus be used to understand volatile delivery via subduction. Further, carbon is chemically-reactive and isotope fractionation can be used to determine the main processes controlling volatile movements within arc systems. Here, we report helium isotope and abundance data for 42 deeply-sourced fluid and gas samples from the Central Volcanic Zone (CVZ) and Southern Volcanic Zone (SVZ) of the Andean Convergent Margin (ACM). Data are used to assess the influence of subduction parameters (e.g., crustal thickness, subduction inputs, and convergence rate) on the composition of volatiles in surface volcanic fluid and gas emissions. He isotopes from the CVZ backarc range from 0.1 to 2.6 RA (n = 23), with the highest values in the Puna and the lowest in the Sub-Andean foreland fold-and-thrust belt. Atmosphere-corrected He isotopes from the SVZ range from 0.7 to 5.0 RA (n = 19). Taken together, these data reveal a clear southeastward increase in 3He/4He, with the highest values (in the SVZ) falling below the nominal range associated with pure upper mantle helium (8 ± 1 RA), approaching the mean He isotope value for arc gases of (5.4 ± 1.9 RA). Notably, the lowest values are found in the CVZ, suggesting more significant crustal inputs (i.e., assimilation of 4He) to the helium budget. The crustal thickness in the CVZ (up to 70 km) is significantly larger than in the SVZ, where it is just ∼40 km. We suggest that crustal thickness exerts a primary control on the extent of fluid-crust interaction, as helium and other volatiles rise through the upper plate in the ACM. We also report carbon isotopes from (n = 11) sites in the CVZ, where δ13C varies between −15.3‰ and −1.2‰ [vs. Vienna Pee Dee Belemnite (VPDB)] and CO2/3He values that vary by over two orders of magnitude (6.9 × 108–1.7 × 1011). In the SVZ, carbon isotope ratios are also reported from (n = 13) sites and vary between −17.2‰ and −4.1‰. CO2/3He values vary by over four orders of magnitude (4.7 × 107–1.7 × 1012). Low δ13C and CO2/3He values are consistent with CO2 removal (e.g., calcite precipitation and gas dissolution) in shallow hydrothermal systems. Carbon isotope fractionation modeling suggests that calcite precipitation occurs at temperatures coincident with the upper temperature limit for life (122°C), suggesting that biology may play a role in C-He systematics of arc-related volcanic fluid and gas emissions.Fil: Barry, P. H.. Woods Hole Oceanographic Institution; Estados UnidosFil: De Moor, J. M.. University of New Mexico; Estados Unidos. UNIVERSIDAD NACIONAL DE COSTA RICA (UNA);Fil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Aguilera, F.. Universidad Católica del Norte; ChileFil: Hudak, M. R.. Woods Hole Oceanographic Institution; Estados UnidosFil: Bekaert, D. V.. Woods Hole Oceanographic Institution; Estados UnidosFil: Turner, S. J.. University of Massachussets; Estados UnidosFil: Curtice, J.. Woods Hole Oceanographic Institution; Estados UnidosFil: Seltzer, A. M.. Woods Hole Oceanographic Institution; Estados UnidosFil: Jessen, G. L.. Universidad Austral de Chile; ChileFil: Osses, E.. Universidad Austral de Chile; ChileFil: Blamey, J. M.. Universidad de Santiago de Chile; ChileFil: Amenábar, M. J.. Universidad de Santiago de Chile; ChileFil: Selci, M.. University Of Naples Federico Ii; ItaliaFil: Cascone, M.. University Of Naples Federico Ii; ItaliaFil: Bastianoni, A.. University Of Naples Federico Ii; ItaliaFil: Nakagawa, M.. Tokyo Institute Of Technology; JapónFil: Filipovich, Ruben Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Bustos, Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Schrenk, M. O.. Michigan State University; Estados UnidosFil: Buongiorno, J.. Maryville College; Estados UnidosFil: Ramírez, C. J.. Servicio Geológico Ambiental (segeoam); Costa RicaFil: Rogers, T. J.. University of Tennessee; Estados UnidosFil: Lloyd, K. G.. University of Tennessee; Estados UnidosFil: Giovannelli, D.. Institute Of Marine Biological Resources And Biotechno; Itali

    20 years of active deformation on volcano caldera: Joint analysis of InSAR and AInSAR techniques

    No full text
    InSAR (interferometric synthetic aperture radar) techniques are applied to investigate last two decades of surface deformation of the Cerro Blanco/Robledo Caldera (CBRC). The objective is the identification of deforming patterns that alter the shape of these complex structures when they show low or null activity. The joint analysis between results by using different methods over a long time span, represents a unique opportunity to improve knowledge of volcanic structures located in remote area and, for this, poorly or not monitored. In this work we identify displacement patterns over the volcanic area, by using both classical differential InSAR analysis, and A-InSAR (advanced InSAR) analysis based on SAR data acquired by ERS-1/2 and ENVISAT sensors during the 1996-2010 time interval. The satellite-derived information allows us to characterize the deformation pattern that affected the CBRC and shows that the actively deforming CBRC is subsiding in the observed period. In order to figure out the deformation history of CBRC, we analyzed the four sub-periods 1992-1996, 1996-2000, and 2005-2010 by using standard differential InSAR technique, and the interval 2003-2007 by adopting an A-InSAR technique. Subsidence velocities of the CBRC caldera are about 2.6 cm/yr in the time interval 1992-1996 (measured with ERS descending data), 1.8 cm/yr in 1996-2000 (ERS descending data), 1.2 cm/yr in 2003-2007 (ENVISAT descending data), and finally, 0.87 cm/yr in 2005-2010 (ENVISAT ascending data). Moreover, outside the caldera and in particular in the NW area, we observe the presence of positive velocity values. Results show that: (a) a decreasing subsidence rate might be related to the reduction of volcanic activity in correspondence of the CBRC; (b) positive velocity signal, decreasing with time, might be interpreted as follows: - evidence of volcano structure lateral spreading, according to the velocity pattern distribution in this area and to the relative local flanks topographic convexity of the volcano structure; - uplift signal of this sector of mountain chain; - combination of the two mechanisms above.Fil: Brunori, C. A.. Istituto Nazionale di Geofisica e Vulcanologia; Italia;Fil: Bignami, C.. Istituto Nazionale di Geofisica e Vulcanologia; Italia;Fil: Stramondo, S.. Istituto Nazionale di Geofisica e Vulcanologia; Italia;Fil: Bustos, Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Salta. Instituto de Investigaciones en Energía No Convencional; Argentin

    Volcanic debris avalanche transport and emplacement at Chimpa volcano (Central Puna, Argentina): Insights from morphology, grain-size and clast surficial textures

    No full text
    Understanding the flow dynamics in debris avalanches is an important tool to advance the knowledge about lateral failures of volcanoes, a fundamental step towards an accurate risk assessment and mitigation in volcanic areas. We describe the morphological, grain-size, and clast surficial textures of the Casana volcanic debris avalanche deposit emplaced by the sector collapse of Chimpa volcano (Central Puna, Argentina). We focused our analysis on the volcanic debris avalanche deposit, characterized by ridges, reduction in downflow matrix grainsize, jigsaw-cracked blocks in the whole extent of the deposit, collision superficial textures in grains (fractures, percussion marks, and voids). Sedimentological and textural analysis show a progressive disintegration and fracturing of the larger particles with greater distance in a dry, granular flow with minimal internal deformation during propagation. Casana avalanche behaved like a rigid body in the proximal area and as a granular flow in the medial and distal reach. Block sliding mechanisms generated the toreva block in the proximal region whereas granular flow produced the debris avalanche deposits. This is an example of how different mechanisms can interact during debris avalanche emplacement, which are strictly related to the cause of the volcano instability, the lithology and the degree of alteration of the source mass, and its interaction with paleotopography. Although the geological risk of the proposed study area is low, the study of Casana VDAD is important to understand similar processes in other volcanoes providing constraints to hazard assessment.Fil: Bustos, Emilce. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Capra, Lucía. Universidad Nacional Autónoma de México. Centro de Geociencias, Campus Juriquilla, Querétaro; MéxicoFil: Arnosio, José Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Norini, Gianluca. Consiglio Nazionale delle Ricerche; Itali
    corecore