253 research outputs found

    Influence of Small-Scale Inhomogeneities on the Cosmological Consistency Tests

    Full text link
    The current cosmological dark sector (dark matter plus dark energy) is challenging our comprehension about the physical processes taking place in the Universe. Recently, some authors tried to falsify the basic underlying assumptions of such dark matter-dark energy paradigm. In this Letter, we show that oversimplifications of the measurement process may produce false positives to any consistency test based on the globally homogeneous and isotropic LCDM model and its expansion history based on distance measurements. In particular, when local inhomogeneity effects due to clumped matter or voids are taken into account, an apparent violation of the basic assumptions ("Copernican Principle") seems to be present. Conversely, the amplitude of the deviations also probes the degree of reliability underlying the phenomenological Dyer-Roeder procedure by confronting its predictions with the accuracy of the weak lensing approach. Finally, a new method is devised to reconstruct the effects of the inhomogeneities in a LCDM model, and some suggestions of how to distinguish between clumpiness (or void) effects from different cosmologies are discussed.Comment: 18 pages, 2 figures. Improved version accepted for publication as a Letter in MNRA

    Studying light propagation in a locally homogeneous universe through an extended Dyer-Roeder approach

    Full text link
    Light is affected by local inhomogeneities in its propagation, which may alter distances and so cosmological parameter estimation. In the era of precision cosmology, the presence of inhomogeneities may induce systematic errors if not properly accounted. In this vein, a new interpretation of the conventional Dyer-Roeder (DR) approach by allowing light received from distant sources to travel in regions denser than average is proposed. It is argued that the existence of a distribution of small and moderate cosmic voids (or "black regions") implies that its matter content was redistributed to the homogeneous and clustered matter components with the former becoming denser than the cosmic average in the absence of voids. Phenomenologically, this means that the DR smoothness parameter (denoted here by αE\alpha_E) can be greater than unity, and, therefore, all previous analyses constraining it should be rediscussed with a free upper limit. Accordingly, by performing a statistical analysis involving 557 type Ia supernovae (SNe Ia) from Union2 compilation data in a flat Λ\LambdaCDM model we obtain for the extended parameter, αE=1.26−0.54+0.68\alpha_E=1.26^{+0.68}_{-0.54} (1σ1\sigma). The effects of αE\alpha_E are also analyzed for generic Λ\LambdaCDM models and flat XCDM cosmologies. For both models, we find that a value of αE\alpha_E greater than unity is able to harmonize SNe Ia and cosmic microwave background observations thereby alleviating the well-known tension between low and high redshift data. Finally, a simple toy model based on the existence of cosmic voids is proposed in order to justify why αE\alpha_E can be greater than unity as required by supernovae data.Comment: 5 pages, 2 figures. Title modified, results unchanged. It matches version published as a Brief Report in Phys. Rev.

    Galaxy clusters, type Ia supernovae and the fine structure constant

    Full text link
    As is well known, measurements of the Sunyaev-Zeldovich effect can be combined with observations of the X-ray surface brightness of galaxy clusters to estimate the angular diameter distance to these structures. In this paper, we show that this technique depends on the fine structure constant, α\alpha. Therefore, if α\alpha is a time-dependent quantity, e.g., α=α0ϕ(z)\alpha=\alpha_0 \phi(z), where ϕ\phi is a function of redshift, we argue that current data do not provide the real angular diameter distance, DA(z)D_{\rm{A}}(z), to the cluster but instead DAdata(z)=ϕ(z)2DA(z)D_A^{data}(z) = \phi(z)^2 D_{\rm{A}}(z). We use this result to derive constraints on a possible variation of α\alpha for a class of dilaton runaway models considering a sample of 25 measurements of DAdata(z)D_A^{data}(z) in redshift range 0.023<z<0.7840.023 < z < 0.784 and estimates of DA(z)D_{\rm{A}}(z) from current type Ia supernovae observations. We find no significant indication of variation of α\alpha with the present data.Comment: 8 pages, 4 figures, To appear in JCA

    On tidal forces in f(R) theories of gravity

    Get PDF
    Despite the extraordinary attention that modified gravity theories have attracted over the past decade, the geodesic deviation equation in this context has not received proper formulation thus far. This equation provides an elegant way to investigate the timelike, null and spacelike structure of spacetime geometries. In this investigation we provide the full derivation of this equation in situations where General Relativity has been extended in Robertson-Walker background spacetimes. We find that for null geodesics the contribution arising from the geometrical new terms is in general non-zero. Finally we apply the results to a well known class of f(R) theories, compare the results with General Relativity predictions and obtain the equivalent area distance relation.Comment: 9 pages, 2 figure

    Constraints on a possible variation of the fine structure constant from galaxy cluster data

    Full text link
    We propose a new method to probe a possible time evolution of the fine structure constant α\alpha from X-ray and Sunyaev-Zeldovich measurements of the gas mass fraction (fgasf_{gas}) in galaxy clusters. Taking into account a direct relation between variations of α\alpha and violations of the distance-duality relation, we discuss constraints on α\alpha for a class of dilaton runaway models. Although not yet competitive with bounds from high-zz quasar absorption systems, our constraints, considering a sample of 29 measurements of fgasf_{gas}, in the redshift interval 0.14<z<0.890.14 < z < 0.89, provide an independent estimate of α\alpha variation at low and intermediate redshifts. Furthermore, current and planned surveys will provide a larger amount of data and thus allow to improve the limits on α\alpha variation obtained in the present analysis.Comment: 7 pages, 2 figures, accepted for publication in JCA
    • …
    corecore