5,062 research outputs found

    The attractive nonlinear delta-function potential

    Full text link
    We solve the continuous one-dimensional Schr\"{o}dinger equation for the case of an inverted {\em nonlinear} delta-function potential located at the origin, obtaining the bound state in closed form as a function of the nonlinear exponent. The bound state probability profile decays exponentially away from the origin, with a profile width that increases monotonically with the nonlinear exponent, becoming an almost completely extended state when this approaches two. At an exponent value of two, the bound state suffers a discontinuous change to a delta-like profile. Further increase of the exponent increases again the width of the probability profile, although the bound state is proven to be stable only for exponents below two. The transmission of plane waves across the nonlinear delta potential increases monotonically with the nonlinearity exponent and is insensitive to the sign of its opacity.Comment: submitted to Am. J. of Phys., sixteen pages, three figure

    Force induced stretched state: Effects of temperature

    Full text link
    A model of self avoiding walks with suitable constraint has been developed to study the effect of temperature on a single stranded DNA (ssDNA) in the constant force ensemble. Our exact calculations for small chains show that the extension (reaction co-ordinate) may increase or decrease with the temperature depending upon the applied force. The simple model developed here which incorporates semi-microscopic details of base direction provide an explanation of the force induced transitions in ssDNA as observed in experiments.Comment: 5 pages, 8 figures, RevTex

    Effects of Eye-phase in DNA unzipping

    Full text link
    The onset of an "eye-phase" and its role during the DNA unzipping is studied when a force is applied to the interior of the chain. The directionality of the hydrogen bond introduced here shows oscillations in force-extension curve similar to a "saw-tooth" kind of oscillations seen in the protein unfolding experiments. The effects of intermediates (hairpins) and stacking energies on the melting profile have also been discussed.Comment: RevTeX v4, 9 pages with 7 eps figure

    Searching for cavities of various densities in the Earth's crust with a low-energy electron-antineutrino beta-beam

    Full text link
    We propose searching for deep underground cavities of different densities in the Earth's crust using a long-baseline electron-antineutrino disappearance experiment, realized through a low-energy beta-beam with highly-enhanced luminosity. We focus on four cases: cavities with densities close to that of water, iron-banded formations, heavier mineral deposits, and regions of abnormal charge accumulation that have been posited to appear prior to the occurrence of an intense earthquake. The sensitivity to identify cavities attains confidence levels higher than 3σ3\sigma and 5σ5\sigma for exposures times of 3 months and 1.5 years, respectively, and cavity densities below 1 g cm3^{-3} or above 5 g cm3^{-3}, with widths greater than 200 km. We reconstruct the cavity density, width, and position, assuming one of them known while keeping the other two free. We obtain large allowed regions that improve as the cavity density differs more from the Earth's mean density. Furthermore, we demonstrate that knowledge of the cavity density is important to obtain O(10%) error on the width. Finally, we introduce an observable to quantify the presence of a cavity by changing the orientation of the electron-antineutrino beam, with which we are able to identify the presence of a cavity at the 2σ2\sigma to 5σ5\sigma C.L.Comment: 7 pages, 5 figures; matches published versio

    Theory of High-Force DNA Stretching and Overstretching

    Get PDF
    Single molecule experiments on single- and double stranded DNA have sparked a renewed interest in the force-extension of polymers. The extensible Freely Jointed Chain (FJC) model is frequently invoked to explain the observed behavior of single-stranded DNA. We demonstrate that this model does not satisfactorily describe recent high-force stretching data. We instead propose a model (the Discrete Persistent Chain, or ``DPC'') that borrows features from both the FJC and the Wormlike Chain, and show that it resembles the data more closely. We find that most of the high-force behavior previously attributed to stretch elasticity is really a feature of the corrected entropic elasticity; the true stretch compliance of single-stranded DNA is several times smaller than that found by previous authors. Next we elaborate our model to allow coexistence of two conformational states of DNA, each with its own stretch and bend elastic constants. Our model is computationally simple, and gives an excellent fit through the entire overstretching transition of nicked, double-stranded DNA. The fit gives the first values for the elastic constants of the stretched state. In particular we find the effective bend stiffness for DNA in this state to be about 10 nm*kbt, a value quite different from either B-form or single-stranded DNAComment: 33 pages, 11 figures. High-quality figures available upon reques

    DNA unzipped under a constant force exhibits multiple metastable intermediates

    Full text link
    Single molecule studies, at constant force, of the separation of double-stranded DNA into two separated single strands may provide information relevant to the dynamics of DNA replication. At constant applied force, theory predicts that the unzipped length as a function of time is characterized by jumps during which the strands separate rapidly, followed by long pauses where the number of separated base pairs remains constant. Here, we report previously uncharacterized observations of this striking behavior carried out on a number of identical single molecules simultaneously. When several single lphage molecules are subject to the same applied force, the pause positions are reproducible in each. This reproducibility shows that the positions and durations of the pauses in unzipping provide a sequence-dependent molecular fingerprint. For small forces, the DNA remains in a partially unzipped state for at least several hours. For larger forces, the separation is still characterized by jumps and pauses, but the double-stranded DNA will completely unzip in less than 30 min

    Dynamic force spectroscopy of DNA hairpins. II. Irreversibility and dissipation

    Full text link
    We investigate irreversibility and dissipation in single molecules that cooperatively fold/unfold in a two state manner under the action of mechanical force. We apply path thermodynamics to derive analytical expressions for the average dissipated work and the average hopping number in two state systems. It is shown how these quantities only depend on two parameters that characterize the folding/unfolding kinetics of the molecule: the fragility and the coexistence hopping rate. The latter has to be rescaled to take into account the appropriate experimental setup. Finally we carry out pulling experiments with optical tweezers in a specifically designed DNA hairpin that shows two-state cooperative folding. We then use these experimental results to validate our theoretical predictions.Comment: 28 pages, 12 figure
    corecore