15 research outputs found

    Collateral circulation: Past and present

    Get PDF
    Following an arterial occlusion outward remodeling of pre-existent inter-connecting arterioles occurs by proliferation of vascular smooth muscle and endothelial cells. This is initiated by deformation of the endothelial cells through increased pulsatile fluid shear stress (FSS) caused by the steep pressure gradient between the high pre-occlusive and the very low post-occlusive pressure regions that are interconnected by collateral vessels. Shear stress leads to the activation and expression of all NOS isoforms and NO production, followed by endothelial VEGF secretion, which induces MCP-1 synthesis in endothelium and in the smooth muscle of the media. This leads to attraction and activation of monocytes and T-cells into the adventitial space (peripheral collateral vessels) or attachment of these cells to the endothelium (coronary collaterals). Mononuclear cells produce proteases and growth factors to digest the extra-cellular scaffold and allow motility and provide space for the new cells. They also produce NO from iNOS, which is essential for arteriogenesis. The bulk of new tissue production is carried by the smooth muscles of the media, which transform their phenotype from a contractile into a synthetic and proliferative one. Important roles are played by actin binding proteins like ABRA, cofilin, and thymosin beta 4 which determine actin polymerization and maturation. Integrins and connexins are markedly up-regulated. A key role in this concerted action which leads to a 2-to-20 fold increase in vascular diameter, depending on species size (mouse versus human) are the transcription factors AP-1, egr-1, carp, ets, by the Rho pathway and by the Mitogen Activated Kinases ERK-1 and -2. In spite of the enormous increase in tissue mass (up to 50-fold) the degree of functional restoration of blood flow capacity is incomplete and ends at 30% of maximal conductance (coronary) and 40% in the vascular periphery. The process of arteriogenesis can be drastically stimulated by increases in FSS (arterio-venous fistulas) and can be completely blocked by inhibition of NO production, by pharmacological blockade of VEGF-A and by the inhibition of the Rho-pathway. Pharmacological stimulation of arteriogenesis, important for the treatment of arterial occlusive diseases, seems feasible with NO donors

    Old Players with a Newly Defined Function: Fra-1 and c-Fos Support Growth of Human Malignant Breast Tumors by Activating Membrane Biogenesis at the Cytoplasm

    Get PDF
    A shared characteristic of tumor cells is their exacerbated growth. Consequently, tumor cells demand high rates of phospholipid synthesis required for membrane biogenesis to support their growth. c-Fos, in addition to its AP-1 transcription factor activity, is the only protein known up to date that is capable of activating lipid synthesis in normal and brain tumor tissue. For this latter activity, c-Fos associates to the endoplasmic reticulum (ER) through its N-terminal domain and activates phospholipid synthesis, an event that requires it Basic Domain (BD) (aa 139–159). Fra-1, another member of the FOS family of proteins, is over-expressed in human breast cancer cells and its BD is highly homologous to that of c-Fos with two conservative substitutions in its basic amino acids. Consequently, herein we examined if Fra-1 and/or c-Fos participate in growth of breast cancer cells by activating phospholipid synthesis as found previously for c-Fos in brain tumors. We found both Fra-1 and c-Fos over-expressed in >95% of human ductal breast carcinoma biopsies examined contrasting with the very low or undetectable levels in normal tissue. Furthermore, both proteins associate to the ER and activate phospholipid synthesis in cultured MCF7 and MDA-MB231 breast cancer cells and in human breast cancer samples. Stripping tumor membranes of Fra-1 and c-Fos prior to assaying their lipid synthesis capacity in vitro results in non-activated lipid synthesis levels that are restored to their initial activated state by addition of Fra-1 and/or c-Fos to the assays. In MDA-MB231 cells primed to proliferate, blocking Fra-1 and c-Fos with neutralizing antibodies blocks lipid-synthesis activation and cells do not proliferate. Taken together, these results disclose the cytoplasmic activity of Fra-1 and c-Fos as potential targets for controlling growth of breast carcinomas by decreasing the rate of membrane biogenesis required for growth

    A Novel Platelet-Activating Factor Receptor Antagonist Inhibits Choroidal Neovascularization and Subretinal Fibrosis

    Get PDF
    Choroidal neovascularization (CNV) is a critical pathogenesis in age-related macular degeneration (AMD), the most common cause of blindness in developed countries. To date, the precise molecular and cellular mechanisms underlying CNV have not been elucidated. Platelet-activating factor (PAF) has been previously implicated in angiogenesis; however, the roles of PAF and its receptor (PAF-R) in CNV have not been addressed. The present study reveals several important findings concerning the relationship of the PAF-R signaling with CNV. PAF-R was detected in a mouse model of laser-induced CNV and was upregulated during CNV development. Experimental CNV was suppressed by administering WEB2086, a novel PAF-R antagonist. WEB2086-dependent suppression of CNV occurred via the inhibition of macrophage infiltration and the expression of proangiogenic (vascular endothelial growth factor) and proinflammatory molecules (monocyte chemotactic protein-1 and IL-6) in the retinal pigment epithelium–choroid complex. Additionally, WEB2086-induced PAF-R blockage suppresses experimentally induced subretinal fibrosis, which resembles the fibrotic subretinal scarring observed in neovascular AMD. As optimal treatment modalities for neovascular AMD would target the multiple mechanisms of AMD-associated vision loss, including neovascularization, inflammation and fibrosis, our results suggest PAF-R as an attractive molecular target in the treatment of AMD
    corecore