995 research outputs found

    Screening in (d+s)-wave superconductors: Application to Raman scattering

    Full text link
    We study the polarization-dependent electronic Raman response of untwinned YBa2_2Cu3_3O7δ_{7-\delta} superconductors employing a tight-binding band structure with anisotropic hopping matrix parameters and a superconducting gap with a mixing of dd- and s-wave symmetry. Using general arguments we find screening terms in the B^{\}_{1g} scattering channel which are required by gauge invariance. As a result, we obtain a small but measurable softening of the pair-breaking peak, whose position has been attributed for a long time to twice the superconducting gap maximum. Furthermore, we predict superconductivity-induced changes in the phonon line shapes that could provide a way to detect the isotropic s-wave admixture to the superconducting gap.Comment: typos corrected, 6 pages, 3 figure

    Magnetic field enhanced structural instability in EuTiO_{3}

    Full text link
    EuTiO_{3} undergoes a structural phase transition from cubic to tetragonal at T_S = 282 K which is not accompanied by any long range magnetic order. However, it is related to the oxygen ocathedra rotation driven by a zone boundary acoustic mode softening. Here we show that this displacive second order structural phase transition can be shifted to higher temperatures by the application of an external magnetic field (increased by 4 K for mu_{0}H = 9 T). This observed field dependence is in agreement with theoretical predictions based on a coupled spin-anharmonic-phonon interaction model.Comment: 4 pages, 4 figure

    Oxygen-isotope effect on the superconducting gap in the cuprate superconductor Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}

    Full text link
    The oxygen-isotope (^{16}O/^{18}O) effect (OIE) on the zero-temperature superconducting energy gap \Delta_0 was studied for a series of Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta} samples (0.0\leq x\leq0.45). The OIE on \Delta_0 was found to scale with the one on the superconducting transition temperature. These experimental results are in quantitative agreement with predictions from a polaronic model for cuprate high-temperature superconductors and rule out approaches based on purely electronic mechanisms.Comment: 5 pages, 3 figure

    Intrinsic and structural isotope effects in Fe-based superconductors

    Full text link
    The currently available results of the isotope effect on the superconducting transition temperature T_c in Fe-based high-temperature superconductors (HTS) are highly controversial. The values of the Fe isotope effect (Fe-IE) exponent \alpha_Fe for various families of Fe-based HTS were found to be as well positive, as negative, or even be exceedingly larger than the BCS value \alpha_BCS=0.5. Here we demonstrate that the Fe isotope substitution causes small structural modifications which, in turn, affect T_c. Upon correcting the isotope effect exponent for these structural effects, an almost unique value of \alpha~0.35-0.4 is observed for at least three different families of Fe-based HTS.Comment: 4 pages, 2 figure

    Theory of Dynamic Stripe Induced Superconductivity

    Full text link
    Since the recently reported giant isotope effect on T* [1] could be consistently explained within an anharmonic spin-charge-phonon interaction model, we consider here the role played by stripe formation on the superconducting properties within the same model. This is a two-component scenario and we recast its basic elements into a BCS effective Hamiltonian. We find that the stripe formation is vital to high-Tc superconductivity since it provides the glue between the two components to enhance Tc to the unexpectedly large values observed experimentally.Comment: 7 pages, 2 figure

    Hybrid paramagnon phonon modes at elevated temperatures in EuTiO3

    Full text link
    EuTiO3 (ETO) has recently experienced an enormous revival of interest because of its possible multiferroic properties which are currently in the focus of research. Unfortunately ETO is an unlikely candidate for enlarged multifunctionality since the mode softening - typical for ferroelectrics - remains incomplete, and the antiferromagnetic properties appear at 5.5K only. However, a strong coupling between lattice and Eu spins exists and leads to the appearance of a magnon-phonon-hybrid mode at elevated temperatures as evidenced by electron paramagnetic resonance (EPR), muon spin rotation ({\mu}SR) experiments and model predictions based on a coupled spin-polarizability Hamiltonian. This novel finding supports the notion of strong magneto-dielectric (MD) effects being realized in ETO and opens new strategies in material design and technological applications.Comment: 9 pages, 4 figure

    Carbon geochemistry in lakes and coastal erosion sites

    Get PDF
    corecore