14 research outputs found

    Local–global strategy for the prediction of residual stresses in FSW processes

    No full text
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00170-016-9016-3This work describes the local–global strategy proposed for the computation of residual stresses in friction stir welding (FSW) processes. A coupling strategy between the analysis of the process zone nearby the pin tool (local level analysis) and the simulation carried out for the entire structure to be welded (global level analysis) is implemented to accurately predict the temperature histories and, thereby, the residual stresses in FSW. As a first step, the local problem solves the material stirring as well as the heat generation induced by the pin and shoulder rotation at the heat affected zone. The Arbitrary Lagrangian Eulerian (ALE) formulation is adopted to deal with the rotation of complex pin shapes. A thermo-rigid-viscoplastic constitutive law is employed to characterize the viscous flow of the material, driven by the high-strain rates induced by the FSW process. A mixed temperature–velocity–pressure finite element technology is used to deal with the isochoric nature of the strains. The output of this local analysis is the heat generated either by plastic dissipation or by friction, and it is used as the power input for the welding analysis at structural (global) level. The global problem is tackled within the Lagrangian framework together with a thermo-elasto-viscoplastic constitutive model. In addition, in this case, the mixed temperature–displacement–pressure format is introduced to deal with the deviatoric nature of the plastic strains. The outcomes of this analysis are the distortions and the residual stresses after welding. The material used in this work is stainless steel 304 L; however, the methodology presented is applicable to a wide range of materials. The proposed numerical strategy is validated by the experimental evidence.Peer ReviewedPostprint (author's final draft

    Biochemical and Biophysical Characterization of the dsDNA Packaging Motor from the Lactococcus lactis Bacteriophage Asccphi28

    No full text
    Double-stranded DNA viruses package their genomes into pre-assembled protein procapsids. This process is driven by macromolecular motors that transiently assemble at a unique vertex of the procapsid and utilize homomeric ring ATPases to couple genome encapsidation to ATP hydrolysis. Here, we describe the biochemical and biophysical characterization of the packaging ATPase from Lactococcus lactis phage asccφ28. Size-exclusion chromatography (SEC), analytical ultracentrifugation (AUC), small angle X-ray scattering (SAXS), and negative stain transmission electron microscopy (TEM) indicate that the ~45 kDa protein formed a 443 kDa cylindrical assembly with a maximum dimension of ~155 Å and radius of gyration of ~54 Å. Together with the dimensions of the crystallographic asymmetric unit from preliminary X-ray diffraction experiments, these results indicate that gp11 forms a decameric D5-symmetric complex consisting of two pentameric rings related by 2-fold symmetry. Additional kinetic analysis shows that recombinantly expressed gp11 has ATPase activity comparable to that of functional ATPase rings assembled on procapsids in other genome packaging systems. Hence, gp11 forms rings in solution that likely reflect the fully assembled ATPases in active virus-bound motor complexes. Whereas ATPase functionality in other double-stranded DNA (dsDNA) phage packaging systems requires assembly on viral capsids, the ability to form functional rings in solution imparts gp11 with significant advantages for high-resolution structural studies and rigorous biophysical/biochemical analysis

    A second, non-canonical RNA-dependent RNA polymerase in SARS Coronavirus

    No full text
    In (+) RNA coronaviruses, replication and transcription of the giant ∼30 kb genome to produce genome- and subgenome-size RNAs of both polarities are mediated by a cognate membrane-bound enzymatic complex. Its RNA-dependent RNA polymerase (RdRp) activity appears to be supplied by non-structural protein 12 (nsp12) that includes an RdRp domain conserved in all RNA viruses. Using SARS coronavirus, we now show that coronaviruses uniquely encode a second RdRp residing in nsp8. This protein strongly prefers the internal 5′-(G/U)CC-3′ trinucleotides on RNA templates to initiate the synthesis of complementary oligonucleotides of <6 residues in a reaction whose fidelity is relatively low. Distant structural homology between the C-terminal domain of nsp8 and the catalytic palm subdomain of RdRps of RNA viruses suggests a common origin of the two coronavirus RdRps, which however may have evolved different sets of catalytic residues. A parallel between the nsp8 RdRp and cellular DNA-dependent RNA primases is drawn to propose that the nsp8 RdRp produces primers utilized by the primer-dependent nsp12 RdRp
    corecore