4 research outputs found

    Mechanism of action of PD-1 receptor/ligand targeted cancer immunotherapy

    Get PDF
    Immunotherapy targeting the Programmed Death (PD-1) receptor/ligand (L) "checkpoint" rapidly gains ground in the treatment of many cancer types. To increase treatment scope and efficacy, predictive biomarkers and rational selection of co-treatments are required. To meet these demands, we must understand PD-1 function in detail. We here outline recent insights into the regulation of the CD8(+) T cell response by PD-1. The prevailing view has been that blockade of PD-1/ligand (L) interaction "reinvigorates" cytotoxic T lymphocytes (CTL) that were rendered dysfunctional in the tumor microenvironment (TME). However, this review stresses that tumors continuously communicate with adjacent draining lymph nodes (LNs) and that the PD-1 checkpoint also operates during T cell priming. We clarify the role of the PD-(L)1 system at the T cell/DC interface, where it regulates T cell receptor (TCR) signaling and CD28 costimulation and thus controls activation of tumor-specific T cells. We also highlight the importance of CD4(+) T cell help during priming, which allows DCs to provide other costimulatory and cytokine signals required for optimal CTL differentiation and likely avoidance of a dysfunctional state. Therefore, we pose that PD-(L)1 blockade should exploit LN function and be combined with "help" signals to optimize CTL efficacy.Tumorimmunolog

    Helpless priming sends CD8(+)T cells on the road to exhaustion

    Get PDF
    Persistent antigen exposure in chronic infection and cancer has been proposed to lead to cytotoxic T lymphocyte (CTL) "exhaustion", i.e., loss of effector function and disease control. Recent work identifies a population of poorly differentiated TCF-1(+)PD-1(+)CD8(+)T cells as precursors of the terminally exhausted CTL pool. These "predysfunctional" CTLs are suggested to respond to PD-1 targeted therapy by giving rise to a pool of functional CTLs. Supported by gene expression analyses, we present a model in which lack of CD4(+)T cell help during CD8(+)T cell priming results in the formation of predysfunctional CTLs. Our model implies that predysfunctional CTLs are formed during priming and that the remedy for CTL dysfunction is to provide "help" signals for generation of optimal CTL effectors. We substantiate that this may be achieved by engaging CD4(+)T cells in new CD8(+)T cell priming, or by combined PD-1 blocking and CD27 agonism with available immunotherapeutic antibodies.Tumorimmunolog

    Mechanism of action of PD‐1 receptor/ligand targeted cancer immunotherapy

    No full text
    Immunotherapy targeting the Programmed Death (PD-1) receptor/ligand (L) "checkpoint" rapidly gains ground in the treatment of many cancer types. To increase treatment scope and efficacy, predictive biomarkers and rational selection of co-treatments are required. To meet these demands, we must understand PD-1 function in detail. We here outline recent insights into the regulation of the CD8(+) T cell response by PD-1. The prevailing view has been that blockade of PD-1/ligand (L) interaction "reinvigorates" cytotoxic T lymphocytes (CTL) that were rendered dysfunctional in the tumor microenvironment (TME). However, this review stresses that tumors continuously communicate with adjacent draining lymph nodes (LNs) and that the PD-1 checkpoint also operates during T cell priming. We clarify the role of the PD-(L)1 system at the T cell/DC interface, where it regulates T cell receptor (TCR) signaling and CD28 costimulation and thus controls activation of tumor-specific T cells. We also highlight the importance of CD4(+) T cell help during priming, which allows DCs to provide other costimulatory and cytokine signals required for optimal CTL differentiation and likely avoidance of a dysfunctional state. Therefore, we pose that PD-(L)1 blockade should exploit LN function and be combined with "help" signals to optimize CTL efficacy
    corecore