130 research outputs found

    From Visual Plasticity to the Bionic Eye

    Get PDF
    While visual plasticity is strongest in early infancy, new studies show that plasticity is maintained well into adult life.This possibility is compellingly demonstrated by one patient, SK, who gained vision for the first time in adult life andsignificantly improved his ability to see the world around him. The persistence of visual plasticity in adults is promisingnews for the developing field of visual prosthesis.In recent years, there has been an explosion of research on prosthetic devices for the brain. While memory-enhancingbrain chips are still science fiction, cochlear implants, which stimulate the inner ear with tiny electrodes, now allowpeople who were once deaf to hear with increasing accuracy. Although there is not yet any visual equivalent to thecochlear implant, in recent years vision researchers have started to experiment with similar prosthetic techniques totreat blindness.The goal of visual prosthesis is to allow functional restoration of vision and to improve quality of life for blindpatients. In order to achieve these goals, the prosthetic devices must tap into the brain’s plasticity. Plasticity is howthe brain adapts to new environmental stimuli. It enables all forms of learning, including memorizing facts, playingthe piano, and learning to see. Specifically, plasticity is how neural networks in the brain reorganize in response tonew experiences. Understanding plasticity furthers insight into the brain mechanisms active in visual prostheses, andmay help scientists develop new approaches for future devices

    Visible light is a better co-inducer of apoptosis for curcumin-treated human melanoma cells than UVA

    Get PDF
    Curcumin attracts worldwide scientific interest due to its anti-proliferative and apoptosis inducing effects on different tumor cells at concentrations ranging from 10 to 150 µM (3.7–55 µg/ml). Unfortunately, because of a low oral bioavailability, only low and pharmacologically ineffective serum levels are achievable. In this study, an alternative treatment concept consisting of low concentration curcumin (0.2–5 µg/ml) and irradiation with UVA or visible light (VL) has been tested. The experimental results show clearly that this treatment decreases the proliferation and the viability of human melanoma cells while the cell membrane integrity remains intact. We identified the onset of apoptosis characterized by typical markers such as active caspases 8, 9 and 3 as well as DNA fragmentation accompanied by the loss of cell adhesion. The mitochondrial apoptosis signaling pathway is predominant due to an early activation of caspase-9. The present data indicate a higher efficacy of a combination of curcumin and VL than curcumin and UVA. Reduced effects as a result of light absorption by heavily pigmented skin are unlikely if VL is used. These results indicate that a combination of curcumin and light irradiation may be a useful additional therapy in the treatment of malignant disease

    Speech Perception in Spatially Separated Speech: Effect of Talker Orientation

    Get PDF
    Spatial release from masking (SRM) refers to the improved ability to recognize target speech when target and masker stimuli are spatially separated on the horizontal plane. Laboratory assessment of SRM often involves measurement of speech recognition in two spatial conditions: one in which target and interfering speech originate from directly in front of the listener, and another in which target speech originates from the front of the listener while interfering speech originates from one or both sides of the listener. The vast majority of research investigating SRM has been conducted with target and masker speech stimuli recorded from a microphone placed directly in front of the talker (0 azimuth). As a result, most data on SRM in listeners with normal hearing (NH) simulate a listening situation involving competing talkers that directly face the listener. In the real world, masking speech is produced by talkers with a range of head orientations relative to the listener. The extended high-frequency content of the masker speech at the listener’s ears will vary accordingly. The overall purpose of this study was to determine if masker talker orientation (60 degrees versus versus 0 degrees azimuth) has an effect on SRM in children and adults with NH

    Handling Label Uncertainty on the Example of Automatic Detection of Shepherd's Crook RCA in Coronary CT Angiography

    Full text link
    Coronary artery disease (CAD) is often treated minimally invasively with a catheter being inserted into the diseased coronary vessel. If a patient exhibits a Shepherd's Crook (SC) Right Coronary Artery (RCA) - an anatomical norm variant of the coronary vasculature - the complexity of this procedure is increased. Automated reporting of this variant from coronary CT angiography screening would ease prior risk assessment. We propose a 1D convolutional neural network which leverages a sequence of residual dilated convolutions to automatically determine this norm variant from a prior extracted vessel centerline. As the SC RCA is not clearly defined with respect to concrete measurements, labeling also includes qualitative aspects. Therefore, 4.23% samples in our dataset of 519 RCA centerlines were labeled as unsure SC RCAs, with 5.97% being labeled as sure SC RCAs. We explore measures to handle this label uncertainty, namely global/model-wise random assignment, exclusion, and soft label assignment. Furthermore, we evaluate how this uncertainty can be leveraged for the determination of a rejection class. With our best configuration, we reach an area under the receiver operating characteristic curve (AUC) of 0.938 on confident labels. Moreover, we observe an increase of up to 0.020 AUC when rejecting 10% of the data and leveraging the labeling uncertainty information in the exclusion process.Comment: Accepted at ISBI 202

    Resting-state EEG signatures of Alzheimer's disease are driven by periodic but not aperiodic changes

    Get PDF
    Electroencephalography (EEG) has shown potential for identifying early-stage biomarkers of neurocognitive dysfunction associated with dementia due to Alzheimer's disease (AD). A large body of evidence shows that, compared to healthy controls (HC), AD is associated with power increases in lower EEG frequencies (delta and theta) and decreases in higher frequencies (alpha and beta), together with slowing of the peak alpha frequency. However, the pathophysiological processes underlying these changes remain unclear. For instance, recent studies have shown that apparent shifts in EEG power from high to low frequencies can be driven either by frequency specific periodic power changes or rather by non-oscillatory (aperiodic) changes in the underlying 1/f slope of the power spectrum. Hence, to clarify the mechanism(s) underlying the EEG alterations associated with AD, it is necessary to account for both periodic and aperiodic characteristics of the EEG signal. Across two independent datasets, we examined whether resting-state EEG changes linked to AD reflect true oscillatory (periodic) changes, changes in the aperiodic (non-oscillatory) signal, or a combination of both. We found strong evidence that the alterations are purely periodic in nature, with decreases in oscillatory power at alpha and beta frequencies (AD &lt; HC) leading to lower (alpha + beta) / (delta + theta) power ratios in AD. Aperiodic EEG features did not differ between AD and HC. By replicating the findings in two cohorts, we provide robust evidence for purely oscillatory pathophysiology in AD and against aperiodic EEG changes. We therefore clarify the alterations underlying the neural dynamics in AD and emphasize the robustness of oscillatory AD signatures, which may further be used as potential prognostic or interventional targets in future clinical investigations.</p

    Greater cognitive reserve is related to lower cortical excitability in healthy cognitive aging, but not in early clinical Alzheimer’s disease

    Get PDF
    ObjectiveTo investigate the relationship between cortico-motor excitability and cognitive reserve (CR) in cognitively unimpaired older adults (CU) and in older adults with mild cognitive impairment or mild dementia due to Alzheimer’s disease (AD).MethodsData were collected and analyzed from 15 CU and 24 amyloid-positive AD participants aged 50–90 years. A cognitive reserve questionnaire score (CRQ) assessed education, occupation, leisure activities, physical activities, and social engagement. Cortical excitability was quantified as the average amplitude of motor evoked potentials (MEP amplitude) elicited with single-pulse transcranial magnetic stimulation delivered to primary motor cortex. A linear model compared MEP amplitudes between groups. A linear model tested for an effect of CRQ on MEP amplitude across all participants. Finally, separate linear models tested for an effect of CRQ on MEP amplitude within each group. Exploratory analyses tested for effect modification of demographics, cognitive scores, atrophy measures, and CSF measures within each group using nested regression analysis.ResultsThere was no between-group difference in MEP amplitude after accounting for covariates. The primary model showed a significant interaction term of group*CRQ (R2adj = 0.18, p = 0.013), but no main effect of CRQ. Within the CU group, higher CRQ was significantly associated with lower MEP amplitude (R2adj = 0.45, p = 0.004). There was no association in the AD group.ConclusionLower cortico-motor excitability is related to greater CRQ in CU, but not in AD. Lower MEP amplitudes may reflect greater neural efficiency in cognitively unimpaired older adults. The lack of association seen in AD participants may reflect disruption of the protective effects of CR. Future work is needed to better understand the neurophysiologic mechanisms leading to the protective effects of CR in older adults with and without neurodegenerative disorders

    Developmental Perceptual Impairments: Cases When Tone-Deafness and Prosopagnosia Co-occur

    Get PDF
    Studies have shown subtle gray and white matter abnormalities in subjects with several developmental disorders including prosopagnosia, tone-deafness, and dyslexia. Correlational evidence suggests that tone-deafness and dyslexia tend to co-occur, suggesting a link between these two developmental disorders. However, it is not known whether tone-deafness can also be associated with other developmental disorders such as impaired face recognition or prosopagnosia. We addressed this question by assessing face perception abilities in a group of tone-deaf individuals and matched non-tone-deaf subjects. The Cambridge (CFMT) and the Warrington (WRMT) face memory tests were used to assess face processing in the combined group of 12, out of which six tested in the tone-deaf range. Only tone-deaf participants (two out of six) scored in the impaired range on the CFMT, one of whom was also impaired on the WRMT face memory test. Furthermore, the melodic composite score of all participants on the Montreal Battery of Evaluation of Amusia significantly correlated with their face recognition score on the CFMT. Our results suggest that in some cases tone-deafness might co-occur with face recognition impairments. It is implausible that both deficits are linked to a single cognitive dysfunction that spans different perceptual systems in different modalities. They are likely associated with a common pathogenetic mechanism of early development that leads to anomalies affecting the function of different brain systems or the connection between regions
    • …
    corecore