11 research outputs found

    IRAS observations of the ISM in the gamma CAS reflection nebula

    Get PDF
    Mid-infrared emission from other galaxies originates both from interstellar grains heated by diffuse starlight and local excitation of grains by hot OB stars. Thus, a detailed examination of the Infrared Astronomy Satellite (IRAS) data from a B star interacting with the interstellar medium (ISM) could provide insight into infrared (IR) emission processes in external galaxies. Researchers have therefore used IRAS data to study the B0 IVe star gamma Cas and its surroundings, which they find to exhibit evidence of grain heating, destruction, and possible star formation

    Circumstellar grain extinction properties of recently discovered post AGB stars

    Get PDF
    The circumstellar grains of two hot evolved post asymptotic giant branch (post AGB) stars, HD 89353 and HD 213985 were examined. From ultraviolet spectra, energy balance of the flux, and Kurucz models, the extinction around 2175 A was derived. With visual spectra, an attempt was made to detect 6614 A diffuse band absorption arising from the circumstellar grains so that we could examine the relationship of these features to the infrared features. For both stars, we did not detect any diffuse band absorption at 6614 A, implying the carrier of this diffuse band is not the carrier of the unidentified infrared features not of the 2175 A bump. The linear ultraviolet extinction of the carbon-rich star HD 89353 was determined to continue across the 2175 A region with no sign of the bump; for HD 213985 it was found to be the reverse: a strong, wide bump in the mid-ultraviolet. The 213985 bump was found to be positioned at 2340 A, longward of its usual position in the interstellar medium. Since HD 213985 was determined to have excess carbon, the bump probably arises from a carbonaceous grain. Thus, in view of the ultraviolet and infrared properties of the two post AGB stars, ubiquitous interstellar infrared emission features do not seem to be associated with the 2175 A bump. Instead, the infrared features seem related to the linear ultraviolet extinction component: hydrocarbon grains of radius less than 300 A are present with the linear HD 89353 extinction; amorphous anhydrous carbonaceous grains of radius less than 50 A might cause the shifted ultraviolet extinction bump of HD 213985

    The origin of micrograins

    Get PDF
    Using ultraviolet and infrared techniques, researchers investigated the origins of the tiny (approx. 10A) grains whose presence in the interstellar medium (ISM) is inferred from near-infrared photometry (Sellgren, Werner, and Dinerstein 1983; Sellgren 1984). The authors consider two possibilities: (1) that the grains are formed by condensation in stellar atmospheres; or (2) that they are formed by fragmentation of larger grains in interstellar shocks. They searched for evidence of very small grains in circumstellar environments by analyzing ultraviolet extinction curves in binaries containing hot companions, and by searching for the 3.3-micron emission feature in similar systems. The ultraviolet extinction curve analysis could be applied only to oxygen-rich systems, where small carbonaceous grains would not be expected, so these results provide only indirect information. Researchers find a deficiency of grains smaller than 800A in oxygen-rich systems, consistent with theoretical models of grain condensation which suggest that grains grow to large sizes before injection into the interstellar medium. More direct information on carbonaceous micrograins was obtained from the search for the 3.3-micron feature in carbon-rich binaries with hot companions, whose ultraviolet flux should excite the tiny grains to emit in the infrared. No 3.3-micron feature was found, suggesting that the micrograins are absent in these systems. In addition to the negative search for micrograins in circumstellar environments, researchers have also studied the possible association of these grains with shocks in the diffuse interstellar medium. Using Infrared Astronomy Satellite (IRAS) colors as indicators of the presence or absence of the small grains (e.g., Ryter, Puget, and Perault 1987 and references cited therein), researchers systematically searched for them in regions (reflection nebulae) expected to have sufficient ultraviolet flux to make them glow in the infrared. They found that the distribution is not uniform. The researchers propose that production of micrograins by fragmentation of larger grains in shocks could explain this uneven distribution

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    Cryptic surface-associated multicellularity emerges through cell adhesion and its regulation

    No full text

    Teaching Bioeconomics

    No full text
    Bioeconomics is a relatively young field that uses an expanded microeconomics to examine animal behavior, human behavior, and animal and human social institutions. A voluminous literature is rapidly accumulating. There are as yet no standard textbooks, but there are several excellent books and/or articles that can be used in combination with videos and other aids to make a course that students will enjoy and that teachers can use to advance the frontiers of scholarship in economics and biology. Copyright Springer 2005altruism, conflict, cooperation, evolution, game theory, institutions, rationality,

    A Cognitive-Social Description of Exceptional Children

    No full text
    corecore