5 research outputs found

    Low Temperature Sunlight-Powered Reduction of CO<sub>2</sub> to CO Using a Plasmonic Au/TiO<sub>2</sub> Nanocatalyst

    Get PDF
    Sunlight-powered reduction of CO2 to fuels and chemicals is a promising strategy to close the carbon loop and facilitate the energy transition. In this research, we demonstrate that Au nanoparticles supported on TiO2 are an efficient plasmonic catalyst for the sunlight-powered reverse water-gas shift (rWGS) reaction. A maximum CO production rate of 429 mmol ⋅ gAu−1 ⋅ h−1 with a selectivity of 98 % and an apparent quantum efficiency of 4.7 % were achieved using mildly concentrated sunlight (1.44 W ⋅ cm−2 equals 14.4 sun). The CO production rate showed an exponential increase with increasing light intensity, suggesting that the process is mainly promoted by a photothermal effect. Thermal reference experiments with the same catalysts promoted CH4 formation, dropping the CO selectivity to 70 %. Thus, mildly concentrated sunlight can efficiently and selectively enhance the promotion of the rWGS reaction without using external heating.ImPhys/Optic

    Continuous-Flow Sunlight-Powered CO<sub>2</sub> Methanation Catalyzed by γ-Al<sub>2</sub>O<sub>3</sub>-Supported Plasmonic Ru Nanorods

    Get PDF
    Plasmonic CO2 methanation using γ-Al2O3-supported Ru nanorods was carried out under continuous-flow conditions without conventional heating, using mildly concentrated sunlight as the sole and sustainable energy source (AM 1.5, irradiance 5.5–14.4 kW·m−2 = 5.5–14.4 suns). Under 12.5 suns, a CO2 conversion exceeding 97% was achieved with complete selectivity towards CH4 and a stable production rate (261.9 mmol·g−1 Ru·h−1) for at least 12 h. The CH4 production rate showed an exponential increase with increasing light intensity, suggesting that the process was mainly promoted by photothermal heating. This was confirmed by the apparent activation energy of 64.3 kJ·mol−1, which is very similar to the activation energy obtained for reference experiments in dark (67.3 kJ·mol−1). The flow rate influence was studied under 14.4 suns, achieving a CH4 production plateau of 264 µmol min−1 (792 mmol·g−1 Ru·h−1) with a constant catalyst bed temperature of approximately 204◦C.ImPhys/Optic

    The Influence of Particle Size Distribution and Shell Imperfections on the Plasmon Resonance of Au and Ag Nanoshells

    Get PDF
    Au and Ag nanoshells are of interest for a wide range of applications. The plasmon resonance of such nanoshells is the property of interest and can be tuned in a broad spectral regime, ranging from the ultraviolet to the mid-infrared. To date, a large number of manuscripts have been published on the optics of such nanoshells. Few of these, however, address the effect of particle size distribution and metal shell imperfections on the plasmon resonance. Both are inherent to the chemical synthesis of metal nanoshells and therefore to a large extent unavoidable. It is of vital importance to understand their effect on the plasmon resonance, since this determines the scope and limitations of the technology and may have a direct impact on the application of such particles. Here, we elucidate the effect of particle size distribution and imperfections in the metal shell on the plasmon resonance of Au and Ag nanoshells. The size of the polystyrene core and the thickness of the Au and Ag shells are systematically varied to study their influence on the plasmon resonance, and the results are compared to values obtained through optical simulations using extended Mie theory and finite element method. Discrepancies between theory and practice are studied in detail and discussed extensively. Quantitative information on the minimum thickness of the metal shell, which is required to realize a satisfactory plasmon resonance of a metal nanoshell, is provided for Au and Ag.ImPhys/Optic

    Qualification of an ultrasonic instrument for real-time monitoring of size and concentration of nanoparticles during liquid phase bottom-up synthesis

    Get PDF
    Both in design and production of nanoparticles and nanocomposites it is of vital importance to have information about their size and concentration. During the formation of nanoparticles, real-time monitoring of particle size and concentration during bottom-up synthesis in liquids allows for a detailed study of nucleation and growth. This provides valuable insights into the formation of nanoparticles that can be used for process optimization and scale up. In the production of nanoparticles, real-time monitoring enables intervention to minimize the number of off-spec batches. In this paper we will qualify an ultrasound nanoparticle sizer (UNPS) as a real-time monitor for the growth of nanoparticles (or sub-micro particles) in the 100 nm-1 μm range. Nanoparticles affect the speed and attenuation of ultrasonic waves in the dispersion. The size of the change depends, amongst other things, on the size and concentration of the nanoparticles. This dependency is used in the UNPS method. The qualification of the UNPS was undertaken in two successful experiments. The first experiment consisted of static measurements on commercially available silica particles, and the second experiment was real-time monitoring of the size and concentration during the growth of silica nanoparticles in Stöber synthesis in a water-alcohol mixture starting from the molecular precursor tetraethyl orthosilicate. The results of the UNPS were verified by measurements of a dynamic light scattering device and a transmission electron microscope.ImPhys/Acoustical Wavefield Imagin

    Using Fiber Bragg Grating Sensors to Quantify Temperature Non-Uniformities in Plasmonic Catalyst Beds under Illumination

    No full text
    Distinguishing between photothermal and non-thermal contributions is essential in plasmon catalysis. Use of a tailored optical temperature sensor based on fiber Bragg gratings enabled us to obtain an accurate temperature map of an illuminated plasmonic catalyst bed with high spatiotemporal resolution. Its importance for quantification of the photothermal and non-thermal contributions to plasmon catalysis is demonstrated using a Ru/Al2O3 catalyst. Upon illumination with LEDs, we measured temperature differences exceeding 50 °C in the top 0.5 mm of the catalyst bed. Furthermore, we discovered differences between the surface temperature and the temperature obtained via conventional thermocouple measurements underneath the catalyst bed exceeding 200 °C at 2.6 W cm−2 light intensity. This demonstrates that accurate multi-point temperature measurements are a prerequisite for a correct interpretation of catalysis results of light-powered chemical reactions obtained with plasmonic catalysts.ImPhys/Optic
    corecore