52 research outputs found

    Sunlight Powered Continuous Flow Reverse Water Gas Shift Process Using a Plasmonic Au/TiO<sub>2</sub> Nanocatalyst

    Get PDF
    The continuous flow reverse water gas shift (rWGS) process was efficiently catalyzed by a plasmonic Au/TiO2 nanocatalyst using sunlight as sole and sustainable energy source. The influence of the catalyst bed thickness on the CO production rate was studied, and three different catalytic regimes were identified as direct plasmon catalysis (DPC), shielded plasmon catalysis (SPC) and unused plasmon catalysis (UPC). The CO2 : H2 ratio was optimized to 4 : 1 and a maximum CO production rate of 7420 mmol ⋅ m−2 ⋅ h−1 was achieved under mild reaction conditions (p=3.5 bar, no external heating, Ee=14.0 kW ⋅ m−2), corresponding to an aparent quantum efficiency of 4.15%. The stability of the Au/TiO2 catalyst was studied for 110 h continuous operation, maintaining more than 82% of the initial CO production rate. On/off experiments mimicking discontinuous sunlight powered processing furthermore showed that the Au/TiO2 catalyst was stable for 8 consecutive runs.</p

    Dutch Outcome in Implantable Cardioverter-Defibrillator Therapy:Implantable Cardioverter-Defibrillator-Related Complications in a Contemporary Primary Prevention Cohort

    Get PDF
    Background One third of primary prevention implantable cardioverter-defibrillator patients receive appropriate therapy, but all remain at risk of defibrillator complications. Information on these complications in contemporary cohorts is limited. This study assessed complications and their risk factors after defibrillator implantation in a Dutch nationwide prospective registry cohort and forecasts the potential reduction in complications under distinct scenarios of updated indication criteria. Methods and Results Complications in a prospective multicenter registry cohort of 1442 primary implantable cardioverter-defibrillator implant patients were classified as major or minor. The potential for reducing complications was derived from a newly developed prediction model of appropriate therapy to identify patients with a low probability of benefitting from the implantable cardioverter-defibrillator. During a follow-up of 2.2 years (interquartile range, 2.0-2.6 years), 228 complications occurred in 195 patients (13.6%), with 113 patients (7.8%) experiencing at least one major complication. Most common ones were lead related (n=93) and infection (n=18). Minor complications occurred in 6.8% of patients, with lead-related (n=47) and pocket-related (n=40) complications as the most prevailing ones. A surgical reintervention or additional hospitalization was required in 53% or 61% of complications, respectively. Complications were strongly associated with device type. Application of stricter implant indication results in a comparable proportional reduction of (major) complications. Conclusions One in 13 patients experiences at least one major implantable cardioverter-defibrillator-related complication, and many patients undergo a surgical reintervention. Complications are related to defibrillator implantations, and these should be discussed with the patient. Stricter implant indication criteria and careful selection of device type implanted may have significant clinical and financial benefits

    A facile route for the synthesis of sub-micron sized hollow and multiporous organosilica spheres

    No full text
    We present a facile route for the synthesis of sub-micron sized hollow and multiporous organosilica spheres, which is based on an oil-in-water emulsion and merely uses one organosilica precursor-phenyl trimethoxysilane-that serves as monomer, precursor for a surface active species and oil phase. This journal is © the Partner Organisations 2014

    Comparative Building Energy Simulation Study of Static and Thermochromically Adaptive Energy-Efficient Glazing in Various Climate Regions

    No full text
    The building sector contributes approximately one third of the total energy consumption worldwide. A large part of this energy is used for the heating and cooling of buildings, which can be drastically reduced by use of energy-efficient glazing. In this study, we performed building energy simulations on a prototypical residential building, and compared commercially available static (low-e, solar IR blocking) to newly developed adaptive thermochromic glazing systems for various climate regions. The modeling results show that static energy-efficient glazing is mainly optimized for either hot climates, where low solar heat gain can reduce cooling demands drastically, or cold climates, where low-e properties have a huge influence on heating demands. For intermediate climates, we demonstrate that adaptive thermochromic glazing in combination with a low-e coating is perfectly suited. The newly developed thermochromic glazing can lead to annual energy consumption improvement of up to 22% in comparison to clear glass, which exceeds all other glazing systems. Furthermore, we demonstrate that in the Netherlands the use of this new glazing system can lead to annual cost savings of EU 638 per dwelling (172 m2, 25% window fa&ccedil;ade), and to annual nationwide CO2 savings of 4.5 Mt. Ergo, we show that further development of thermochromic smart windows into market-ready products can have a huge economic, ecological and societal impact on all intermediate climate region in the northern hemisphere
    • …
    corecore