39 research outputs found

    Проблема защиты прав ребёнка в международном праве

    Get PDF
    Бушенкова К. В. Проблема защиты прав ребёнка в международном праве / К. В. Бушенкова // Міжнародні читання з міжнародного права пам’яті професора П.Є. Казанського : матер. третьої міжнар. наук. конф. (м. Одеса, 2–3 листопада 2012 р.) / відп. за випуск М. І. Пашковський ; НУ «ОЮА». – Одеса : Фенікс, 2012. – С. 246-250.Будущее каждой нации и человечества в целом потенциально зависит от подрастающего поколения, поэтому обеспечение прав детей и их правовая защита, безусловно, являются составной частью международного права в области прав человека

    FOCAL MECHANISMS OF EARTHQUAKES IN THE SUBDUCTION ZONE OF THE WESTERN PACIFIC PLATE

    Get PDF
    Deformation features of the subducting Pacific lithospheric plate are considered according to the data on earthquake focal mechanisms. The territory includes the convergent boundaries between the Pacific Plate and the North American (in the Aleutian arc region), the Okhotsk, the Eurasian and the Philippine plates.It has been shown that the angle of subducting Pacific Plate in the Aleutian subduction zone affects the focal mechanisms of earthquakes that occurred in the upper, 35 km part of the oceanic plate in the zone of its bending. There occur normal-fault earthquakes at a steep-angle subduction and rare thrust earthquakes at a shallow-angle subduction. The azimuthal orientation of P-axes of the focal mechanism solutions in the upper (1–70 km) contact zone corresponds to the Pacific Plate displacement vector when the plate fragments are subducting west-northwestwards. There occurs a change in azimuthal orientation of the compression axes in the subducting plate at a depth of more than 70 km: the axes occupy different azimuthal sectors showing difference in the orientation of their slope, with the orientations of the T-axes become multidirectional.The calculation of seismotectonic deformations was carried out based on the data on focal mechanisms of 7768 earthquakes. It was revealed that the Exx and Ezz deformation fields are the most homogeneous at depths of 1–70 km. The pattern of seismotectonic deformations changes abruptly for deep parts of the subducting plate (105–200, 200–400, and 400–700 km), there are observed heterogeneous deformation fields Exx, Eyy and Еzz with alternating episodes of extension and shortening.There has been proposed the author’s scheme of the influence of the upper mantle convection structure on the geometry of the subducting plate (slab) as a potential catalyst for the processes responsible for the separation of seismic activity zones and the change of earthquake types with depth and in different parts of the extended subduction zone

    СТРУКТУРА ЛИТОСФЕРЫ И СЕЙСМОТЕКТОНИЧЕСКИЕ ДЕФОРМАЦИИ ЗОНЫ КОНТАКТА ЛИТОСФЕРНЫХ ПЛИТ В РАЙОНЕ ОСТРОВА СУМАТРА

    Get PDF
    The inversion seismic tomography algorithm (ITS) was used to calculate 3D seismic anomalies models for velocities of P- and S-waves in the zone of the Sunda arc, Indonesia. In the area under study, strong earthquakes (M>4.8) are clustered in the zone of high P-wave velocities. Earthquake hypocenters are located in zones of both high and low velocity anomalies of S-waves. The giant Sumatra earthquake (December 26, 2004, Mw=9.0) ruptured the greatest fault length of any recorded earthquake, and the rupture started in the area wherein the sign of P-wave velo­city anomalies is abruptly changed. We calculated seismotectonic deformations (STD) from data on mechanisms of 2227 earthquakes recorded from 1977 to 2013, and our calculations show that the STD component, that controls vertical extension of rocks, is most stable through all the depth levels. In the marginal regions at the western and eastern sides of the Sunda arc, the crustal areas (depths from 0 to 35 km) are subject to deformations which sign is opposite to that of deformations in the central part. Besides, at depths from 70 to 150 km beneath the Sumatra earthquake epicentre area, the zone is subject to deformations which sign is opposite to that of deformations in the studied part of the Sunda arc. For earthquakes that may occur in the crust in the Sunda arc in the contact zone of the plates, maximum magnitudes depend on the direction of pressure imposed by the actively subducting plate, which is an additional criteria for determining the limit magnitude for the region under study. На основе сейсмотомографического алгоpитма ИТC pаccчитано тpеxмеpное pаcпpеделение аномалий cкоpоcтей P- и S-волн в зоне Зондской дуги. Сильные землетрясения (с М>4.8) рассматриваемого района группируются в зоне повышенных скоростей Р-волн. Гипоцентры сейсмических событий попадают в зоны как повышенных, так и пониженных скоростей S-волн. Географически начало вспарывания очага Суматранского землетрясения 2004 г. (Mw=9.0) совпадает с районом резкого изменения знака аномалий скоростей Р-волн. Расчет сейсмотектонических деформаций по данным механизмов 2227 землетрясений, зарегистрированных с 1977 по 2013 г., показал, что на всех глубинах наиболее устойчиво ведет себя компонента СТД, отвечающая за вертикальное удлинение объемов горных масс. Участки земной коры (0–35 км) в окраинных районах с западной и восточной стороны Зондской дуги характеризуются деформациями противоположного знака по отношению к центральной части. Также в слое 70–150 км под эпицентральной областью Суматранского землетрясения происходят деформации противоположного знака по отношению к деформациям рассматриваемой части Зондской дуги. Максимальные магнитуды коровых землетрясений Зондской дуги, возникающие в зоне контакта плит, зависят от направления давления активной погружающейся плиты, что является одним из дополнительных критериев определения предельной магнитуды этого района

    МЕХАНИЗМЫ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ В ЗАПАДНОЙ ЗОНЕ СУБДУКЦИИ ТИХООКЕАНСКОЙ ЛИТОСФЕРНОЙ ПЛИТЫ В ЗАВИСИМОСТИ ОТ ОСОБЕННОСТЕЙ ЕЕ ПОГРУЖЕНИЯ

    Get PDF
    Deformation features of the subducting Pacific lithospheric plate are considered according to the data on earthquake focal mechanisms. The territory includes the convergent boundaries between the Pacific Plate and the North American (in the Aleutian arc region), the Okhotsk, the Eurasian and the Philippine plates.It has been shown that the angle of subducting Pacific Plate in the Aleutian subduction zone affects the focal mechanisms of earthquakes that occurred in the upper, 35 km part of the oceanic plate in the zone of its bending. There occur normal-fault earthquakes at a steep-angle subduction and rare thrust earthquakes at a shallow-angle subduction. The azimuthal orientation of P-axes of the focal mechanism solutions in the upper (1–70 km) contact zone corresponds to the Pacific Plate displacement vector when the plate fragments are subducting west-northwestwards. There occurs a change in azimuthal orientation of the compression axes in the subducting plate at a depth of more than 70 km: the axes occupy different azimuthal sectors showing difference in the orientation of their slope, with the orientations of the T-axes become multidirectional.The calculation of seismotectonic deformations was carried out based on the data on focal mechanisms of 7768 earthquakes. It was revealed that the Exx and Ezz deformation fields are the most homogeneous at depths of 1–70 km. The pattern of seismotectonic deformations changes abruptly for deep parts of the subducting plate (105–200, 200–400, and 400–700 km), there are observed heterogeneous deformation fields Exx, Eyy and Еzz with alternating episodes of extension and shortening.There has been proposed the author’s scheme of the influence of the upper mantle convection structure on the geometry of the subducting plate (slab) as a potential catalyst for the processes responsible for the separation of seismic activity zones and the change of earthquake types with depth and in different parts of the extended subduction zone.Исследуются особенности деформирования погружающейся Тихоокеанской литосферной плиты по данным механизмов очагов землетрясений. Территория включает зоны конвергентных границ Тихоокеанской плиты с Северо-Американской (в районе Алеутской дуги), Охотоморской, Евразийской и Филиппинской плитами.Показано, что угол наклона Тихоокеанской плиты в зоне субдукции Алеутской дуги оказывает влияние на механизмы очагов землетрясений, произошедших в верхней части (до 35 км) океанической плиты в области ее изгиба. При крутом наклоне погружения плиты возникают сбросовые смещения в очагах, при пологом – редкие надвиговые землетрясения. Азимутальная ориентация Р-осей механизмов очагов землетрясений верхней части зоны контакта (1–70 км) соответствует направлению вектора смещения Тихоокеанской плиты при погружении ее фрагментов к западу-северо-западу. Глубже 70 км в погружающейся плите происходит изменение азимутальной ориентации осей сжатия: они занимают разные азимутальные секторы и, фиксируется разнообразная ориентация их наклона, ориентации осей Т становятся разнонаправленными.На основе данных о механизмах очагов 7768 землетрясений выполнен расчет сейсмотектонических деформаций. Выявлено, что поля деформаций Ехх и Еzz наиболее однородны для глубин 1–70 км. Картина сейсмотектонических деформаций резко меняется для глубоких частей погружающейся плиты (105–200, 200–400 и 400–700 км), наблюдаются неоднородные поля деформаций Ехх, Еуу, Еzz с перемежающимися участками удлинений и укорочений.Предложена авторская схема влияния структуры конвекции в верхней мантии на геометрию погружающейся плиты (слэба) как вероятного катализатора процессов, ответственных за раздельность зон сейсмоактивности и смену типов землетрясений с глубиной и в разных частях протяженной зоны субдукции

    ТЕКТОНИЧЕСКИЕ ПРОГИБЫ НА ВОСТОЧНО-ЕВРОПЕЙСКОЙ И СИБИРСКОЙ ПЛАТФОРМАХ: ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ КОНВЕКЦИИ ПОД ЕВРАЗИЙСКИМ КОНТИНЕНТОМ

    Get PDF
    In modern concepts, the upper mantle of the Earth is a highly viscous incompressible liquid, and its flow is described using the Navier – Stokes equations in the Oberbeck – Boussinesq and geodynamic approximations. Convective flows in the upper mantle play a decisive role in the kinematics of lithospheric plates and the geological history of continental regions. Mathematical modeling is a basic method for studying convective processes in the mantle. Our paper presents a numerical model of convection, which is based on the implicit artificial compressibility method. This model is tested in detail by comparing our calculation results with the results of a well-known international test. It is demonstrated that the Fedorenko grids sequence method is highly efficient and reduces the computing time almost by a factor of eight. The numerical model is generalized in order to state the problem in a spherical system of coordinates. It is used to analyse the distribution of convective flows in the upper mantle underneath the Eurasian continent. The analysis shows that the thickness and geometrical parameters of the lithospheric blocks are the factors of significant influence on the distribution of convective flows in the upper mantle. The resulting structure of convective flows is manifested in the surface topography of large platform areas wherein the lithosphere thickness is increased. Thus, the locations of extended downward convection flows under the East European and Siberian platforms are clearly comparable to syneclises observed in the study area.В соответствии с современными представлениями верхняя мантия Земли рассматривается как высоковязкая несжимаемая жидкость, для описания течения которой привлекаются уравнения Навье – Стокса в приближении Обербека – Буссинеска и геодинамическом приближении. Конвективные течения в верхней мантии Земли играют определяющую роль в кинематике литосферных плит и геологической истории развития континентальных областей. Основным методом исследования конвективных процессов в мантии Земли является математическое моделирование. В настоящей работе представлена численная модель конвекции, базирующаяся на неявной реализации метода искусственной сжимаемости. Приведены результаты детального тестирования модели путем сопоставления результатов расчетов с результатами известного международного теста. Продемонстрирована высокая эффективность метода последовательности сеток Р.П. Федоренко, позволившего сократить примерно в восемь раз время компьютерного счета. Представлено обобщение численной модели по постановке задачи в сферической системе координат. На основе построенной численной модели проанализировано распределение конвективных течений в верхней мантии Земли под Евразией. Показано, что мощность и геометрия блоков литосферы оказывают заметное влияние на распределение конвективных течений в верхней мантии Земли. Установившаяся структура этих течений проявляется в рельефе дневной поверхности обширных платформенных областей с увеличенной мощностью литосферы. Так, расположение протяженных нисходящих потоков конвекции под Восточно-Европейской и Сибирской платформами в плане явно сопоставимо с наблюдаемыми в рельефе синеклизами

    Субмеридиональная пограничная зона в Азии: сейсмичность, структура литосферы и распределение конвективных потоков в верхней мантии

    Get PDF
    The study is focused on the submeridional transregional boundary that stretches as a wide band along 105°E in Central Asia. In modern seismic models, it is traceable to a depth of ~600 km. In the continental area to the west of this boundary, seismic activity is increased. Following the study of the origin of the transregional boundary zone, it becomes possible to assess its contribution to the current geodynamic processes in Asia. This article presents a comprehensive analysis based on comparison of the available data with the results obtained in our study using independent methods. The distribution of earthquakes was analyzed by depth. We revealed a correlation between the characteristics of seismotectonic deformation (STD) reconstructed from earthquake focal mechanisms, the structure of P-velocity anomalies, and the distribution of convection flows in the upper mantle. The pattern of seismic velocity anomalies in the upper mantle was investigated on the basis of the data from the ISC catalogue for the period of 1964–2011. The modeling was carried out for two regional tomographic schemes, using the first arrivals of P-waves from [Koulakov et al., 2002 and PP-phases from [Bushenkova et al., 2002, with the subsequent summation with weight coefficients depending on the distribution of the input data in each scheme. A similar approach was applied in [Koulakov, Bushenkova, 2010 for the territory of Siberia; however, that model only partially covered the submeridional transregional boundary zone and was based on fewer ISC data (until 2001). The parameters of the combined model were used to estimate variations in the lithosphere thickness, which can significantly influence the structure of convection flows in the upper mantle [Chervov et al., 2014; Bushenkova et al., 2014, 2016. The thickness variations were taken into account when setting boundary conditions in the numerical modeling of thermal convection, which followed the algorithm described in [Chervov, Chernykh, 2014. The STD field was reconstructed from the earthquake focal mechanisms (M≥4.6) which occurred in Central Asia in 1976–2017. The analysis shows that the zone, wherein the seismic regime changes, correlates with the band wherein the STD principal axes are turning, the submeridional high/low velocity elongated boundary in the seismotomographic model, as well as with the submeridionally elongated descending convective flow in the upper mantle. Shortening of the STD principal axes is observed in the submeridional direction in the western part and in the sublatitudinal direction in the eastern part of the study area. The directions of the principal axes turn in the 93–105°E zone. It is thus probable that the submeridionally elongated descending convective flow in the upper mantle of this region, which results from the superposition of the lithosphere thickness heterogeneities, is a barrier to propagation of seismically manifested active geodynamic processes caused by lithospheric plates collision.Исследование посвящено субмеридиональной трансрегиональной границе, которая широкой полосой простирается вдоль 105° в.д. в Центральной Азии и может быть прослежена в современных сейсмических моделях вплоть до глубины ~600 км. К западу от нее отмечается повышенная континентальная сейсмическая активность. Изучение природы трансрегиональной пограничной зоны позволит оценить ее вклад в текущие геодинамические процессы в Азии. В работе проведен комплексный анализ на основе сопоставления доступных данных с результатами, полученными в ходе исследования с помощью независимых методов. Проанализировано распределение землетрясений по глубине. Прослежена корреляция между характером сейсмотектонических деформаций (СТД) по данным механизмов очагов землетрясений, структурой аномалий Р-скорости и распределением конвективных потоков в верхней мантии. Структура распределения аномалий сейсмических скоростей в верхней мантии основана на данных каталога ISC за период 1964–2011 гг. Моделирование выполнено по двум региональным томографическим схемам (на первых вступлениях [Koulakov et al., 2002 и с использованием PP-фаз [Bushenkova et al., 2002) с последующим суммированием с весовыми коэффициентами, зависящими от распределения исходных данных для каждой схемы. Аналогичный подход применен в работе [Koulakov, Bushenkova, 2010 для территории Сибири, в которой модель была построена на меньшем количестве данных каталога ISC (до 2001 г.) и захватывала лишь часть исследуемой в настоящей работе субмеридиональной пограничной зоны. Характеристики полученной суммарной модели использованы для оценки вариаций мощности литосферы, которые, как показали результаты предыдущих исследований [Chervov et al., 2014; Bushenkova et al., 2014, 2016, могут значительно влиять на структуру конвективных течений в верхней мантии. Полученные вариации мощности учтены при задании граничных условий в задаче численного моделирования тепловой конвекции, выполненного в соответствии с алгоритмом [Chervov, Chernykh, 2014. Реконструкция поля СТД проводилась по данным механизмов очагов землетрясений (M≥4.6), которые произошли в Центральной Азии в 1976–2017 гг. Результаты показали, что зона изменения сейсмического режима и полоса разворота главных осей СТД коррелируют с субмеридионально вытянутой границей повышенных/пониженных скоростей в сейсмотомографической модели и с субмеридионально протяженным нисходящим потоком в верхней мантии. Западная часть территории характеризуется субмеридиональным укорочением главных осей деформации, а восточная – субширотным укорочением. Поворот направлений основных осей СТД происходит в зоне 93–105° в.д. Таким образом, субмеридионально протяженный нисходящий поток в конвективной структуре верхней мантии региона, возникший в результате суперпозиции неоднородностей мощности литосферы, вероятно, и представляет собой преграду на пути распространения проявляющихся в сейсмическом режиме активных геодинамических процессов, вызванных коллизией

    Dataset and LOTOS program code to reproduce the main results of seismic tomography for West Aegean region (Turkey)

    No full text
    <p>This file contains the data to reproduce the results presented in the article: </p><p>Petrov I., Bushenkova N., Gulten, P., (2023). Intracontinental extension settings in the structure of the Aegean region (Turkey): local seismic tomography study., <i>Journal of Geodynamics.</i></p><p>This file includes:</p><p>1. The full version of the LOTOS code for the seismic tomography (Koulakov, 2009);</p><p>2. Folder with the dataset including arrival times of the P and S waves and the location of network  from local seismicity in Aegean region of Tukey and it`s surroundings;</p><p>3. README.PDF file with the description of how to reproduce the tomography models and datatests based on data presented in the article. </p><p>Koulakov, I., 2009, LOTOS code for local earthquake tomographic inversion: Benchmarks for testing tomographic algorithms: Bulletin of the Seismological Society of America, v. 99, p. 194–214, https://doi.org/10.1785/0120080013.</p&gt

    Tectonic depressions on the East-European and Siberian platforms: numerical modeling of convection beneath the Eurasian continent

    Get PDF
    In modern concepts, the upper mantle of the Earth is a highly viscous incompressible liquid, and its flow is described using the Navier – Stokes equations in the Oberbeck – Boussinesq and geodynamic approximations. Convective flows in the upper mantle play a decisive role in the kinematics of lithospheric plates and the geological history of continental regions. Mathematical modeling is a basic method for studying convective processes in the mantle. Our paper presents a numerical model of convection, which is based on the implicit artificial compressibility method. This model is tested in detail by comparing our calculation results with the results of a well-known international test. It is demonstrated that the Fedorenko grids sequence method is highly efficient and reduces the computing time almost by a factor of eight. The numerical model is generalized in order to state the problem in a spherical system of coordinates. It is used to analyse the distribution of convective flows in the upper mantle underneath the Eurasian continent. The analysis shows that the thickness and geometrical parameters of the lithospheric blocks are the factors of significant influence on the distribution of convective flows in the upper mantle. The resulting structure of convective flows is manifested in the surface topography of large platform areas wherein the lithosphere thickness is increased. Thus, the locations of extended downward convection flows under the East European and Siberian platforms are clearly comparable to syneclises observed in the study area
    corecore