41 research outputs found

    Effect of pathology type and severity on the distribution of MRI signal intensities within the degenerated nucleus pulposus: application to idiopathic scoliosis and spondylolisthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disc degeneration is characterized by a loss of cellularity, degradation of the extracellular matrix, and, as a result, morphological changes and biomechanical alterations. We hypothesized that the distribution of the MR signal intensity within the nucleus zone of the intervertebral disc was modified according to the pathology and the severity of the pathology. The objective of this study was to propose new parameters characterizing the distribution of the signal intensity within the nucleus zone of lumbar intervertebral discs, and to quantify these changes in patients suffering from spondylolisthesis or idiopathic scoliosis.</p> <p>Methods</p> <p>A retrospective study had been performed on T2-weighted MR images of twenty nine patients suffering from spondylolisthesis and/or scoliosis. The high intensity zone of the nucleus pulposus was semi-automatically detected. The distance "DX" between the center weighted by the signal intensity and the geometrical center was quantified. The sum of the signal intensity on the axis perpendicular to the longitudinal axis of the disc was plotted for each position of the longitudinal axis allowing defining the maximum sum "SM" and its position "PSM".</p> <p>Results</p> <p>"SM" was clearly higher and "PSM" was more shifted for scoliosis than for spondylolisthesis. A two-way analysis of variance showed that the differences observed on "DX" were not attributed to the pathology nor its severity, the differences observed on "SM" were attributed to the pathology but not to its severity, and the differences observed on "PSM" were attributed to both the pathology and its severity.</p> <p>Conclusions</p> <p>The technique proposed in this study showed significant differences in the distribution of the MR signal intensity within the nucleus zone of intervertebral discs due to the pathology and its severity. The dependence of the "PSM" parameter to the severity of the pathology suggests this parameter as a predictive factor of the pathology progression. This new technique should be useful for the early diagnosis of intervertebral disc pathologies as it highlights abnormal patterns in the MRI signal for low severity of the pathology.</p

    "Rehabilitation schools for scoliosis" thematic series: describing the methods and results

    Get PDF
    The Scoliosis Rehabilitation model begins with the correct diagnosis and evaluation of the patient, to make treatment decisions oriented to the patient. The treatment is based on observation, education, scoliosis specific exercises, and bracing. The state of research in the field of conservative treatment is insufficient. There is some evidence supporting scoliosis specific exercises as a part of the rehabilitation treatment, however, the evidence is poor and the different methods are not known by most of the scientific community. The only way to improve the knowledge and understanding of the different physiotherapy methodologies (specific exercises), integrated into the whole rehabilitation program, is to establish a single and comprehensive source of information about it. This is what the SCOLIOSIS Journal is going to do through the "Rehabilitation Schools for Scoliosis" Thematic Series, where technical papers coming from the different schools will be published

    Inducible developmental reprogramming redefines commitment to sexual development in the malaria parasite <i>Plasmodium berghei</i>

    Get PDF
    During malaria infection, Plasmodium spp. parasites cyclically invade red blood cells and can follow two different developmental pathways. They can either replicate asexually to sustain the infection, or differentiate into gametocytes, the sexual stage that can be taken up by mosquitoes, ultimately leading to disease transmission. Despite its importance for malaria control, the process of gametocytogenesis remains poorly understood, partially due to the difficulty of generating high numbers of sexually committed parasites in laboratory conditions1. Recently, an apicomplexa-specific transcription factor (AP2-G) was identified as necessary for gametocyte production in multiple Plasmodium species2,3, and suggested to be an epigenetically regulated master switch that initiates gametocytogenesis4,5. Here we show that in a rodent malaria parasite, Plasmodium berghei, conditional overexpression of AP2-G can be used to synchronously convert the great majority of the population into fertile gametocytes. This discovery allowed us to redefine the time frame of sexual commitment, identify a number of putative AP2-G targets and chart the sequence of transcriptional changes through gametocyte development, including the observation that gender-specific transcription occurred within 6 h of induction. These data provide entry points for further detailed characterization of the key process required for malaria transmission

    Brace technology thematic series: the dynamic derotation brace

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dynamic derotation brace (DDB) was designed in Greece in 1982, as a modification of the Boston brace. It is a custom-made, underarm spinal orthosis featuring aluminium blades set to produce derotating and anti-rotating effects on the thorax and trunk of patients with scoliosis. It is indicated for the non-operative correction of most curves, barring the very high thoracic ones, (when the apex vertebra is T5 or above). The purpose of this article is to familiarize physicians with the DDB, analyze the rationale behind its design, and present the published results of its application.</p> <p>Description & Principles</p> <p>The key feature of the DDB is the addition of the aluminium-made derotating blades posteriorly. These function as a force couple, which is added to the side forces exerted by the brace itself. Corrective forces are also directed through pads. One or more of previously proposed pathomechanical models of scoliosis may underline the corrective function of the DDB: it may act directly on the apical intervertebral disc, effecting correction through the Heuter-Volkman principle; the blades may produce an anti-rotatory element against the deforming "spiral composite muscle trunk rotator"; or it may alter the neuro-motor response by constantly providing new somatosensory input to the patient.</p> <p>Results</p> <p>Based on measurements of the Cobb and Perdriolle angles, up to 82% of patients remained stable or improved with the use of the DDB. Results have varied, though, depending on the type/location of the deformity. The overall results showed that 35% of the curves improved, 46% remained stable and 18% became worse, as assessed by measuring the Cobb angle. The DDB has also been shown to improve cosmesis (except for right thoracic curves) and leave several aspects of patient quality of life unaffected during use.</p> <p>Conclusion</p> <p>Conservative treatment of idiopathic scoliosis using the DDB has shown favorable results. Thoracic curves appear more resistant to both angular and rotatory correction. The published outcome data on the DDB support our belief that the incorporation of aluminium blades to other orthoses would likely improve their efficacy.</p

    Identification of Rhoptry Trafficking Determinants and Evidence for a Novel Sorting Mechanism in the Malaria Parasite Plasmodium falciparum

    Get PDF
    The rhoptry of the malaria parasite Plasmodium falciparum is an unusual secretory organelle that is thought to be related to secretory lysosomes in higher eukaryotes. Rhoptries contain an extensive collection of proteins that participate in host cell invasion and in the formation of the parasitophorous vacuole, but little is known about sorting signals required for rhoptry protein targeting. Using green fluorescent protein chimeras and in vitro pull-down assays, we performed an analysis of the signals required for trafficking of the rhoptry protein RAP1. We provide evidence that RAP1 is escorted to the rhoptry via an interaction with the glycosylphosphatidyl inositol-anchored rhoptry protein RAMA. Once within the rhoptry, RAP1 contains distinct signals for localisation within a sub-compartment of the organelle and subsequent transfer to the parasitophorous vacuole after invasion. This is the first detailed description of rhoptry trafficking signals in Plasmodium

    Injuries in Competitive Figure Skaters

    No full text

    Regional variations in the density and arrangement of elastic fibres in the anulus fibrosus of the human lumbar disc

    No full text
    Elastic fibres are critical components of the extracellular matrix in dynamic biological structures that undergo extension and recoil. Their presence has been demonstrated in the anulus fibrosus of the human lumbar intervertebral disc; however, a detailed regional analysis of their density and arrangement has not been undertaken, limiting our understanding of their structural and functional roles. In this investigation we have quantitatively described regional variations in elastic fibre density in the anulus fibrosus of the human L3-L4 intervertebral disc using histochemistry and light microscopy. Additionally, a multiplanar comparison of patterns of elastic fibre distribution in the intralamellar and interlamellar zones was undertaken. Novel imaging techniques were developed to facilitate the visualization of elastic fibres otherwise masked by dense surrounding matrix. Elastic fibre density was found to be significantly higher in the lamellae of the posterolateral region of the anulus than the anterolateral, and significantly higher in the outer regions than the inner, suggesting that elastic fibre density in each region of the anulus is commensurate with the magnitude of the tensile deformations experienced in bending and torsion. Elastic fibre arrangments in intralamellar and interlamellar zones were shown to be architecturally distinct, suggesting that they perform multiple functional roles within the anulus matrix structural hierarchy
    corecore