1,349 research outputs found

    Whole tumor RNA-sequencing and deconvolution reveal a clinically-prognostic PTEN/PI3K-regulated glioma transcriptional signature

    Get PDF
    The concept that solid tumors are maintained by a productive interplay between neoplastic and non-neoplastic elements has gained traction with the demonstration that stromal fibroblasts and immune system cells dictate cancer development and progression. While less studied, brain tumor (glioma) biology is likewise influenced by non-neoplastic immune system cells (macrophages and microglia) which interact with neoplastic glioma cells to create a unique physiological state (glioma ecosystem) distinct from that found in the normal tissue. To explore this neoplastic ground state, we leveraged several preclinical mouse models of neurofibromatosis type 1 (NF1) optic glioma, a low-grade astrocytoma whose formation and maintenance requires productive interactions between non-neoplastic and neoplastic cells, and employed whole tumor RNA-sequencing and mathematical deconvolution strategies to characterize this low-grade glioma ecosystem as an aggregate of cellular and acellular elements. Using this approach, we demonstrate that optic gliomas generated by altering the germlin

    Adaptive feedback analysis and control of programmable stimuli for assessment of cerebrovascular function

    No full text
    The assessment of cerebrovascular regulatory mechanisms often requires flexibly controlled and precisely timed changes in arterial blood pressure (ABP) and/or inspired CO2. In this study, a new system for inducing variations in mean ABP was designed, implemented and tested using programmable sequences and programmable controls to induce pressure changes through bilateral thigh cuffs. The system is also integrated with a computer-controlled switch to select air or a CO2/air mixture to be provided via a face mask. Adaptive feedback control of a pressure generator was required to meet stringent specifications for fast changes, and accuracy in timing and pressure levels applied by the thigh cuffs. The implemented system consists of a PC-based signal analysis/control unit, a pressure control unit and a CO2/air control unit. Initial evaluations were carried out to compare the cuff pressure control performances between adaptive and non-adaptive control configurations. Results show that the adaptive control method can reduce the mean error in sustaining target pressure by 99.57 % and reduce the transient time in pressure increases by 45.21 %. The system has proven a highly effective tool in ongoing research on brain blood flow control

    Detection of impaired cerebral autoregulation improves by increasing arterial blood pressure variability

    No full text
    Although the assessment of dynamic cerebral autoregulation (CA) based on measurements of spontaneous fluctuations in arterial blood pressure (ABP) and cerebral blood flow (CBF) is a convenient and much used method, there remains uncertainty about its reliability. We tested the effects of increasing ABP variability, provoked by a modification of the thigh cuff method, on the ability of the autoregulation index to discriminate between normal and impaired CA, using hypercapnia as a surrogate for dynamic CA impairment. In 30 healthy volunteers, ABP (Finapres) and CBF velocity (CBFV, transcranial Doppler) were recorded at rest and during 5% CO(2) breathing, with and without pseudo-random sequence inflation and deflation of bilateral thigh cuffs. The application of thigh cuffs increased ABP and CBFV variabilities and was not associated with a distortion of the CBFV step response estimates for both normocapnic and hypercapnic conditions (P=0.59 and P=0.96, respectively). Sensitivity and specificity of CA impairment detection were improved with the thigh cuff method, with the area under the receiver-operator curve increasing from 0.746 to 0.859 (P=0.031). We conclude that the new method is a safe, efficient, and appealing alternative to currently existing assessment methods for the investigation of the status of CA

    The role of the lateral amygdala in the retrieval and maintenance of fear-memories formed by repeated probabilistic reinforcement

    Get PDF
    The lateral nucleus of the amygdala (LA) is a key element in the neural circuit subserving Pavlovian fear-conditioning, an animal model of fear and anxiety. Most studies have focused on the role of the LA in fear acquisition and extinction, i.e., how neural plasticity results from changing contingencies between a neutral conditioned stimulus (CS) (e.g., a tone) and an aversive unconditioned stimulus (US) (e.g., a shock). However, outside of the lab, fear-memories are often the result of repeated and unpredictable experiences. Examples include domestic violence, child abuse or combat. To better understand the role of the LA in the expression of fear resulting from repeated and uncertain reinforcement, rats experienced a 30% partial reinforcement (PR) fear-conditioning schedule four days a week for four weeks. Rats reached asymptotic levels of conditioned-fear expression after the first week. We then manipulated LA activity with drug (or vehicle) (VEH) infusions once a week, for the next three weeks, before the training session. LA infusions of muscimol (MUSC), a GABA-A agonist that inhibits neural activity, reduced CS evoked fear-behavior to pre-conditioning levels. LA infusions of pentagastrin (PENT), a cholecystokinin-2 (CCK) agonist that increases neural excitability, resulted in CS-evoked fear-behavior that continued past the offset of the CS. This suggests that neural activity in the LA is required for the retrieval of fear memories that stem from repeated and uncertain reinforcement, and that CCK signaling in the LA plays a role in the recovery from fear after the removal of the fear-evoking stimulus

    Beta-Adrenergic Receptors in the Lateral Nucleus of the Amygdala Contribute to the Acquisition but Not the Consolidation of Auditory Fear Conditioning

    Get PDF
    Beta-adrenergic receptors (βARs) have long been associated with fear disorders and with learning and memory. However, the contribution of these receptors to Pavlovian fear conditioning, a leading behavioral model for studying fear learning and memory, is still poorly understood. The aim of this study was to investigate the involvement of βAR activation in the acquisition, consolidation and expression of fear conditioning. We focused on manipulations of βARs in the lateral nucleus of the amygdala (LA) because of the well-established contribution of this area to fear conditioning. Specifically, we tested the effects of intra-LA microinfusions of the βAR antagonist, propranolol, on learning and memory for auditory Pavlovian fear conditioning in rats. Pre-training propranolol infusions disrupted the initial acquisition, short-term memory (STM), and long-term memory (LTM) for fear conditioning, but infusions immediately after training had no effect. Further, infusion of propranolol prior to testing fear responses did not affect fear memory expression. These findings indicate that amygdala βARs are important for the acquisition but not the consolidation of fear conditioning

    Antenatal and Intrapartum Risk Factors for Use of Emergency and Restorative Medicaid Dental Services for Children

    Get PDF
    Purpose: To investigate the relationship between antenatal/intrapartum factors and Medicaid use. Methods: Three databases were used: (1) birth records; (2) Medicaid files; and (3) Medicaid dental claims. Results: Children of Caucasian mothers were 34 percent more likely to have more than one restorative claim versus children of African American mothers (odds ratio [OR] equals 1.34, 95 percent confidence interval [95% CI] equals 1.10 to 1.65, P<.005). Children born with low birth weight were 37 percent more likely to have emergency claims (OR equals 1.37, 95% CI equals 1.02 to 1.83, P=.03). The adjusted analysis found that Caucasian mothers had higher odds ratio of having a dental claim than African American mothers (P<.001): 33 percent for a restorative claim and 56 percent for an emergency claim. When race was analyzed, the odds of a restorative claim among African American mothers were 2.5 times higher in children delivered by C-section versus those vaginally delivered (OR equals 2.52, 95% CI equals 1.02-6.2, P<.001). Conclusions: This study found: an association between children of Caucasian mothers and the likelihood of experiencing claims; and a relationship between children born with low birth weight and C-section and the likelihood of use of Medicaid services

    Cellular mechanisms of myocardial infarct expansion.

    Full text link
    Infarct expansion is acute regional dilatation and thinning of the infarct zone. There are several possibilities for the mechanism of this alteration in cardiac shape: thinning could be caused by 1) cell rupture, 2) a reduction in the intercellular space, or 3) stretching of myocytes or 4) slippage of groups of myocytes so that less cells are distributed across the wall. To determine the relative contributions of these cellular mechanisms of wall thinning and dilatation, detailed study of transverse histological sections of rat hearts with infarct expansion was performed 1, 2, and 3 days after coronary ligation. The number of cells across the wall was determined in six regions within, adjacent to, and remote from the infarct. Cell counting was performed so that the total number of cells across the wall and the number of cells per unit length (cell density) across the wall were determined. The transmural cell count and the cell density were correlated with the wall thickness in each region. Myocyte cross-sectional areas and sarcomere lengths were also measured. The results from the infarct expansion hearts were compared with those of sham-operated control hearts that had been similarly analyzed. To ensure that mechanisms identified in the rat were applicable to human infarct expansion, five hearts from patients who died within 3 days of infarction and two hearts from patients without coronary disease wer
    corecore