22,378 research outputs found

    Comprehensive analysis of RGU photometry in the direction to M5

    Full text link
    The RGU-photographic investigation of an intermediate latitude field in the direction to the Galactic center is presented. 164 extra-galactic objects, identified by comparison of Minnesota and Basel charts, are excluded from the program. Also, a region with size 0.104 square-degrees, contaminated by cluster (M5) stars and affected by background light of the bright star HD 136202 is omitted. Contrary to previous investigations, a reddening of E(BV)=0.046E(B-V)=0.046, corresponding to E(G-R)=0.07 mag is adopted. The separation of dwarfs and evolved stars is carried out by an empirical method, already applied in some of our works. A new calibration for the metallicity determination is used for dwarfs, while the absolute magnitude determination for stars of all categories is performed using the procedures given in the literature. There is good agreement between the observed logarithmic space density histograms and the galactic model gradients. Also, the local luminosity function agrees with Gliese's (1969) and Hipparcos' (Jahreiss & Wielen 1997) luminosity functions, for stars with 2<M(G)82<M(G)\leq8 mag. For giants, we obtained two different local space densities from comparison with two Galactic models, i.e. D(0)=6.63D^{*}(0)=6.63, close to that of Gliese (1969), and D(0)=6.79D^{*}(0)=6.79. A metallicity gradient, d[Fe/H]/dz=0.20d[Fe/H]/dz= -0.20 dex/kpc, is detected for dwarfs (only) with absolute magnitudes 4<M(G)64<M(G)\leq6, corresponding to a spectral type interval F5-K0.Comment: 17 pages, including 13 figures and 3 tables, accepted for publication in PAS

    Empirical Color Transformations Between SDSS Photometry and Other Photometric Systems

    Get PDF
    We present empirical color transformations between the Sloan Digital Sky Survey (SDSS) ugriz photometry and Johnson-Cousins UBVRI system and Becker's RGU system, respectively. Owing to the magnitude of data that is becoming available in the SDSS photometric system it is particularly important to be able to convert between this new system and traditional photometric systems. Unlike earlier published transformations we based our calculations on stars actually measured by the SDSS with the SDSS 2.5-m telescope. The photometric database of the SDSS provides in a sense a single-epoch set of 'tertiary standards' covering more than one quarter of the sky. Our transformations should facilitate their use to easily and reliably derive the corresponding approximate Johnson-Cousins or RGU magnitudes. The SDSS survey covers a number of areas that were previously established as standard fields in the Johnson-Cousins system, in particular, fields established by Landolt and by Stetson. We used these overlapping fields to create well-photometered star samples on which our calculated transformations are based. For the RGU photometry we used fields observed in the framework of the new Basel high-latitude field star survey. We calculated empirical color transformations between SDSS photometry and Johnson-Cousins UBVRI and Becker's RGU system. For all transformations we found linear relations to be sufficient. Furthermore we showed that the transformations between the Johnson-Cousins and the SDSS system have a slight dependence on metallicity.Comment: 11 pages, 7 figures, Accepted for publication in A&

    Volume limited dependent Galactic model parameters

    Full text link
    We estimated 34 sets of Galactic model parameters for three intermediate latitude fields with Galactic longitudes l=60, l=90, and l=180, and we discussed their dependence on the volume. Also, we confirmed the variation of these parameters with absolute magnitude and Galactic longitude. The star samples in two fields are restricted with bright and unit absolute magnitude intervals, (4,5], and (5,6], whereas for the third field a larger absolute magnitude interval is adopted, (4,10]. The limiting apparent magnitudes of star samples are g=15 and g=22.5 mag which provide space densities within distances in the line of sight 0.9 and 25 kpc. The Galactic model parameters for the thin disc are not volume dependent. However, the ones for thick disc and halo do show spectacular trends in their variations with volume, except for the scalelength of the thick disc. The local space density of the thick disc increases, whereas the scaleheight of the same Galactic component decreases monotonically. However, both model parameters approach asymptotic values at large distances. The axial ratio of the halo increases abruptly for the volumes where thick disc is dominant, whereas it approaches an asymptotic value gradually for larger volumes, indicating a continuous transition from disclike structure to a spherical one at the outermost region of the Galaxy. The variation of the Galactic model parameters with absolute magnitude can be explained by their dependence on the stellar luminosity, whereas the variation with volume and Galactic longitude at short distances is a bias in analysis.Comment: 12 pages, including 8 figures and 5 tables, accepted for publication in PAS

    Starcounts Redivivus. IV. Density Laws Through Photometric Parallaxes

    Full text link
    In an effort to more precisely define the spatial distribution of Galactic field stars, we present an analysis of the photometric parallaxes of 70,000 stars covering nearly 15 square degrees in seven Kapteyn Selected Areas. We address the affects of Malmquist Bias, subgiant/giant contamination, metallicity and binary stars upon the derived density laws. The affect of binary stars is the most significant. We find that while the disk-like populations of the Milky Way are easily constrained in a simultaneous analysis of all seven fields, no good simultaneous solution for the halo is found. We have applied halo density laws taken from other studies and find that the Besancon flattened power law halo model (c/a=0.6, r^-2.75) produces the best fit to our data. With this halo, the thick disk has a scale height of 750 pc with an 8.5% normalization to the old disk. The old disk scale height is 280-300 pc. Corrected for a binary fraction of 50%, these scale heights are 940 pc and 350-375 pc, respectively. Even with this model, there are systematic discrepancies between the observed and predicted density distributions. Our model produces density overpredictions in the inner Galaxy and density underpredictions in the outer Galaxy. A possible solution is modeling the stellar halo as a two-component system in which the halo has a flattened inner distribution and a roughly spherical, but substructured outer distribution. Further reconciliation could be provided by a flared thick disk, a structure consistent with a merger origin for that population. (Abridged)Comment: 66 pages, accepted to Astrophysical journal, some figures compresse

    The Star Formation Epoch of the Most Massive Early-Type Galaxies

    Get PDF
    We present new Keck spectroscopy of early-type galaxies in three galaxy clusters at z~0.5. We focus on the fundamental plane (FP) relation, and combine the kinematics with structural parameters determined from HST images. The galaxies obey clear FP relations, which are offset from the FP of the nearby Coma cluster due to passive evolution of the stellar populations. The z~0.5 data are combined with published data for 11 additional clusters at 0.18<z<1.28, to determine the evolution of the mean M/L(B) ratio of cluster galaxies with masses M>10^11 M_sun, as implied by the FP. We find dlog(M/L(B))/dz = -0.555+-0.042, stronger evolution than was previously inferred from smaller samples. The observed evolution depends on the luminosity-weighted mean age of the stars in the galaxies, the initial mass function (IMF), selection effects due to progenitor bias, and other parameters. Assuming a normal IMF but allowing for various other sources of uncertainty we find z* = 2.01+-0.20 for the luminosity-weighted mean star formation epoch. The main uncertainty is the slope of the IMF in the range 1-2 Solar masses: we find z* = 4.0 for a top-heavy IMF with slope x=0. The M/L(B) ratios of the cluster galaxies are compared to those of recently published samples of field early-type galaxies at 0.32<z<1.14. Assuming that progenitor bias and the IMF do not depend on environment we find that the present-day age of stars in massive field galaxies is 4.1 +- 2.0 % (~0.4 Gyr) less than that of stars in massive cluster galaxies, consistent with most, but not all, previous studies of local and distant early-type galaxies. This relatively small age difference is surprising in the context of expectations from ``standard'' hierarchical galaxy formation models. [ABRIDGED]Comment: Accepted for publication in ApJ. Minor corrections to match published versio
    corecore