20 research outputs found

    Composite SUVR: a new method for boosting Alzheimer's disease monitoring and diagnostic performance, applied to tau PET

    Get PDF
    Background: Abnormal brain tau protein accumulation is strongly linked to multiple neurodegenerative disorders. Currently, brain tau pathology is quantified in vivo using tau PET by calculating the Standardized Uptake Value Ratio (SUVR) of target and reference regions of interest (ROIs). Recent work (Schwarz et al., 2021) in Alzheimer’s Disease (AD) explored various target and reference ROIs to report performance of SUVR as a biomarker for diagnosis, disease monitoring, and clinical trial efficacy/eligibility (sample size estimate, SSE). Here we introduce a new method and biomarker: Composite SUVR (CUVR). / Methods: We analyzed longitudinal SUV data from ADNI in the available 103 participants having three or more tau PET scans ([18F]AV-1451): 58 cognitively normal (CN); 21 mild cognitive impairment; 24 probable AD. In the spirit of SUVR and statistical ROIs (Chen, et al., NeuroImage 2010), we calculate CUVR as the SUV ratio of two composite regions. Our novel method is that the composite regions are determined by a genetic algorithm that searches the possible 3^96 combinations of regions from FreeSurfer’s default atlas. We compare performance of SUVR with CUVR. Performance metrics follow Schwarz et al.: a linear mixed-effects model quantifies longitudinal group separation by tau accumulation rate (t statistic between fixed effects for CN and AD) and longitudinal precision (model residuals’ standard deviation). CUVR and SUVR values were log-transformed before model fitting. We calculated SSE for a hypothetical clinical trial designed for 80% power to reduce tau PET accumulation by 20% (vs. placebo) in non-CN individuals. / Results: Our method identified a CUVR biomarker involving 60 regions. Figure-1 shows the vast performance improvement of CUVR versus the best-performing SUVR (inferior-temporal target; eroded subcortical white matter reference). Group separation improved by 2.9x (t = 9.57 vs 3.32); longitudinal precision by 6.5x (residual std = 0.331% vs 2.14%); and CUVR required a smaller sample size by 3.9x (83 vs 318). / Conclusions: Our simple data-driven approach discovered a new tau PET biomarker called CUVR. Experimental results show state-of-the-art longitudinal group separation, longitudinal precision, and clinical trial enrichment. The remarkable performance improvements provide compelling evidence for using CUVR for both eligibility and efficacy in Alzheimer’s disease clinical trials, particularly of anti-tau therapies

    Selective suppression of oligodendrocyte-derived amyloid beta rescues neuronal dysfunction in Alzheimer’s disease

    Get PDF
    Funding: Funding: R.M.R, D.K., C.S.F. and M.A.B. are supported by the UK Dementia Research Institute through UK DRI Ltd, principally funded by the UK Medical Research Council. M.A.B. is further supported by an UKRI Future Leaders Fellowship (MR/X011038/1) and an NC3Rs studentship grant (NC/W001675/1). S.S.H. is supported by an Alzheimer’s Association International Research Fellowship (AARF-23-1149637). C.A. and S.W. are supported by the National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre. M.S. is supported by an MRC Career Development Award (MR/X019977/1). T.A.G. is supported by an Alzheimer’s Association Research Fellowship to Promote Diversity (23AARFD-1029918).Reduction of amyloid beta (Aβ) has been shown to be effective in treating Alzheimer’s disease (AD), but the underlying assumption that neurons are the main source of pathogenic Aβ is untested. Here, we challenge this prevailing belief by demonstrating that oligodendrocytes are an important source of Aβ in the human brain and play a key role in promoting abnormal neuronal hyperactivity in an AD knock-in mouse model. We show that selectively suppressing oligodendrocyte Aβ production improves AD brain pathology and restores neuronal function in the mouse model in vivo. Our findings suggest that targeting oligodendrocyte Aβ production could be a promising therapeutic strategy for treating AD.Peer reviewe

    PolyGR and polyPR knock-in mice reveal a conserved neuroprotective extracellular matrix signature in C9orf72 ALS/FTD neurons

    Get PDF
    Dipeptide repeat proteins are a major pathogenic feature of C9orf72 amyotrophic lateral sclerosis (C9ALS)/frontotemporal dementia (FTD) pathology, but their physiological impact has yet to be fully determined. Here we generated C9orf72 dipeptide repeat knock-in mouse models characterized by expression of 400 codon-optimized polyGR or polyPR repeats, and heterozygous C9orf72 reduction. (GR)400 and (PR)400 knock-in mice recapitulate key features of C9ALS/FTD, including cortical neuronal hyperexcitability, age-dependent spinal motor neuron loss and progressive motor dysfunction. Quantitative proteomics revealed an increase in extracellular matrix (ECM) proteins in (GR)400 and (PR)400 spinal cord, with the collagen COL6A1 the most increased protein. TGF-β1 was one of the top predicted regulators of this ECM signature and polyGR expression in human induced pluripotent stem cell neurons was sufficient to induce TGF-β1 followed by COL6A1. Knockdown of TGF-β1 or COL6A1 orthologues in polyGR model Drosophila exacerbated neurodegeneration, while expression of TGF-β1 or COL6A1 in induced pluripotent stem cell-derived motor neurons of patients with C9ALS/FTD protected against glutamate-induced cell death. Altogether, our findings reveal a neuroprotective and conserved ECM signature in C9ALS/FTD.</p

    In Vivo Expression Pattern of MICA and MICB and Its Relevance to Auto-Immunity and Cancer

    Get PDF
    Non-conventional MHC class I MIC molecules interact not with the TCR, but with NKG2D, a C-type lectin activatory receptor present on most NK, γδ and CD8+ αβ T cells. While this interaction is critical in triggering/calibrating the cytotoxic activity of these cells, the actual extent of its in vivo involvement, in man, in infection, cancer or autoimmunity, needs further assessment. The latter has gained momentum along with the reported expansion of peripheral CD4+CD28−NKG2D+ T cells in rheumatoid arthritis (RA). We first initiated to extend this report to a larger cohort of not only RA patients, but also those affected by systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS). In RA and SS, this initial observation was further tested in target tissues: the joint and the salivary glands, respectively. In conclusion and despite occasional and indiscriminate expansion of the previously incriminated T cell subpopulation, no correlation could be observed between the CD4+CD28−NKG2D+ and auto-immunity. Moreover, in situ, the presence of NKG2D matched that of CD8+, but not that of CD4+ T cells. In parallel, a total body tissue scan of both MICA and MICB transcription clearly shows that despite original presumptions, and with the exception of the central nervous system, both genes are widely transcribed and therefore possibly translated and membrane-bound. Extending this analysis to a number of human tumors did not reveal a coherent pattern of expression vs. normal tissues. Collectively these data question previous assumptions, correlating a tissue-specific expression/induction of MIC in relevance to auto-immune or tumor processes

    The β-Secretase Substrate Seizure 6–Like Protein (SEZ6L) Controls Motor Functions in Mice

    Get PDF
    The membrane protein seizure 6-like (SEZ6L) is a neuronal substrate of the Alzheimer's disease protease BACE1, and little is known about its physiological function in the nervous system. Here, we show that SEZ6L constitutive knockout mice display motor phenotypes in adulthood, including changes in gait and decreased motor coordination. Additionally, SEZ6L knockout mice displayed increased anxiety-like behaviour, although spatial learning and memory in the Morris water maze were normal. Analysis of the gross anatomy and proteome of the adult SEZ6L knockout cerebellum did not reveal any major differences compared to wild type, indicating that lack of SEZ6L in other regions of the nervous system may contribute to the phenotypes observed. In summary, our study establishes physiological functions for SEZ6L in regulating motor coordination and curbing anxiety-related behaviour, indicating that aberrant SEZ6L function in the human nervous system may contribute to movement disorders and neuropsychiatric diseases

    Aη-α and Aη-β peptides impair LTP ex vivo within the low nanomolar range and impact neuronal activity in vivo

    Get PDF
    Background: Amyloid precursor protein (APP) processing is central to Alzheimer’s disease (AD) etiology. As early cognitive alterations in AD are strongly correlated to abnormal information processing due to increasing synaptic impairment, it is crucial to characterize how peptides generated through APP cleavage modulate synapse function. We previously described a novel APP processing pathway producing η-secretase-derived peptides (Aη) and revealed that Aη–α, the longest form of Aη produced by η-secretase and α-secretase cleavage, impaired hippocampal long-term potentiation (LTP) ex vivo and neuronal activity in vivo. Methods: With the intention of going beyond this initial observation, we performed a comprehensive analysis to further characterize the effects of both Aη-α and the shorter Aη-β peptide on hippocampus function using ex vivo field electrophysiology, in vivo multiphoton calcium imaging, and in vivo electrophysiology. Results: We demonstrate that both synthetic peptides acutely impair LTP at low nanomolar concentrations ex vivo and reveal the N-terminus to be a primary site of activity. We further show that Aη-β, like Aη–α, inhibits neuronal activity in vivo and provide confirmation of LTP impairment by Aη–α in vivo. Conclusions: These results provide novel insights into the functional role of the recently discovered η-secretase-derived products and suggest that Aη peptides represent important, pathophysiologically relevant, modulators of hippocampal network activity, with profound implications for APP-targeting therapeutic strategies in AD
    corecore