8,978 research outputs found

    Non-disturbing quantum measurements

    Full text link
    We consider pairs of quantum observables (POVMs) and analyze the relation between the notions of non-disturbance, joint measurability and commutativity. We specify conditions under which these properties coincide or differ---depending for instance on the interplay between the number of outcomes and the Hilbert space dimension or on algebraic properties of the effect operators. We also show that (non-)disturbance is in general not a symmetric relation and that it can be decided and quantified by means of a semidefinite program.Comment: Minor corrections in v

    Characterization of the Sequential Product on Quantum Effects

    Full text link
    We present a characterization of the standard sequential product of quantum effects. The characterization is in term of algebraic, continuity and duality conditions that can be physically motivated.Comment: 11 pages. Accepted for publication in the Journal of Mathematical Physic

    The Standard Model of Quantum Measurement Theory: History and Applications

    Get PDF
    The standard model of the quantum theory of measurement is based on an interaction Hamiltonian in which the observable-to-be-measured is multiplied with some observable of a probe system. This simple Ansatz has proved extremely fruitful in the development of the foundations of quantum mechanics. While the ensuing type of models has often been argued to be rather artificial, recent advances in quantum optics have demonstrated their prinicpal and practical feasibility. A brief historical review of the standard model together with an outline of its virtues and limitations are presented as an illustration of the mutual inspiration that has always taken place between foundational and experimental research in quantum physics.Comment: 22 pages, to appear in Found. Phys. 199

    Fabrication of thick structures by sputtering

    Get PDF
    Deposit, 5500-gram of Cu-0.15 wt % Zr alloy, sputtered onto copper cylinder to average thickness of 12.29 mm. Structure was achieved with high-rate sputter deposition for about 100 hours total sputtering time. Material had twice the strength of unsputtered material at temperatures to 723 K and equivalent strength at nearly 873 K

    Design, fabrication and evaluation of chalcogenide glass Luneburg lenses for LiNbO3 integrated optical devices

    Get PDF
    Optical waveguide Luneburg lenses of arsenic trisulfide glass are described. The lenses are formed by thermal evaporation of As2S3 through suitably placed masks onto the surface of LiNbO3:Ti indiffused waveguides. The lenses are designed for input apertures up to 1 cm and for speeds of f/5 or better. They are designed to focus the TM sub 0 guided mode of a beam of wavelength, external to the guide, of 633 nm. The refractive index of the As2S3 films and the changes induced in the refractive index by exposure to short wavelength light were measured. Some correlation between film thickness and optical properties was noted. The short wavelength photosensitivity was used to shorten the lens focal length from the as deposited value. Lenses of rectangular shape, as viewed from above the guide, as well as conventional circular Luneburg lenses, were made. Measurements made on the lenses include thickness profile, general optical quality, focal length, quality of focal spot, and effect of ultraviolet irradiation on optical properties

    Low-density, one-dimensional quantum gases in a split trap

    Full text link
    We investigate degenerate quantum gases in one dimension trapped in a harmonic potential that is split in the centre by a pointlike potential. Since the single particle eigenfunctions of such a system are known for all strengths of the central potential, the dynamics for non-interacting fermionic gases and low-density, strongly interacting bosonic gases can be investigated exactly using the Fermi-Bose mapping theorem. We calculate the exact many-particle ground-state wave-functions for both particle species, investigate soliton-like solutions, and compare the bosonic system to the well-known physics of Bose gases described by the Gross-Pitaevskii equation. We also address the experimentally important questions of creation and detection of such states.Comment: 7 pages, 5 figure

    On localization and position operators in Moebius-covariant theories

    Get PDF
    Some years ago it was shown that, in some cases, a notion of locality can arise from the group of symmetry enjoyed by the theory, thus in an intrinsic way. In particular, when Moebius covariance is present, it is possible to associate some particular transformations to the Tomita Takesaki modular operator and conjugation of a specific interval of an abstract circle. In this context we propose a way to define an operator representing the coordinate conjugated with the modular transformations. Remarkably this coordinate turns out to be compatible with the abstract notion of locality. Finally a concrete example concerning a quantum particle on a line is also given.Comment: 19 pages, UTM 705, version to appear in RM

    Relativistic Quantum Mechanics and Relativistic Entanglement in the Rest-Frame Instant Form of Dynamics

    Full text link
    A new formulation of relativistic quantum mechanics is proposed in the framework of the rest-frame instant form of dynamics with its instantaneous Wigner 3-spaces and with its description of the particle world-lines by means of derived non-canonical predictive coordinates. In it we quantize the frozen Jacobi data of the non-local 4-center of mass and the Wigner-covariant relative variables in an abstract (frame-independent) internal space whose existence is implied by Wigner-covariance. The formalism takes care of the properties of both relativistic bound states and scattering ones. There is a natural solution to the \textit{relativistic localization problem}. The non-relativistic limit leads to standard quantum mechanics but with a frozen Hamilton-Jacobi description of the center of mass. Due to the \textit{non-locality} of the Poincar\'e generators the resulting theory of relativistic entanglement is both \textit{kinematically non-local and spatially non-separable}: these properties, absent in the non-relativistic limit, throw a different light on the interpretation of the non-relativistic quantum non-locality and of its impact on foundational problems.Comment: 73 pages, includes revision

    Approximate joint measurement of qubit observables through an Arthur-Kelly type model

    Full text link
    We consider joint measurement of two and three unsharp qubit observables through an Arthur-Kelly type joint measurement model for qubits. We investigate the effect of initial state of the detectors on the unsharpness of the measurement as well as the post-measurement state of the system. Particular emphasis is given on a physical understanding of the POVM to PVM transition in the model and entanglement between system and detectors.Two approaches for characterizing the unsharpness of the measurement and the resulting measurement uncertainty relations are considered.The corresponding measures of unsharpness are connected for the case where both the measurements are equally unsharp. The connection between the POVM elements and symmetries of the underlying Hamiltonian of the measurement interaction is made explicit and used to perform joint measurement in arbitrary directions. Finally in the case of three observables we derive a necessary condition for the approximate joint measurement and use it show the relative freedom available when the observables are non-orthogonal.Comment: 22 pages; Late

    Maximal Accuracy and Minimal Disturbance in the Arthurs-Kelly Simultaneous Measurement Process

    Get PDF
    The accuracy of the Arthurs-Kelly model of a simultaneous measurement of position and momentum is analysed using concepts developed by Braginsky and Khalili in the context of measurements of a single quantum observable. A distinction is made between the errors of retrodiction and prediction. It is shown that the distribution of measured values coincides with the initial state Husimi function when the retrodictive accuracy is maximised, and that it is related to the final state anti-Husimi function (the P representation of quantum optics) when the predictive accuracy is maximised. The disturbance of the system by the measurement is also discussed. A class of minimally disturbing measurements is characterised. It is shown that the distribution of measured values then coincides with one of the smoothed Wigner functions described by Cartwright.Comment: 12 pages, 0 figures. AMS-Latex. Earlier version replaced with final published versio
    corecore