1,713 research outputs found
Perioperative and anesthetic deaths: toxicological and medico legal aspects
Background: Anesthesia has become safer during decades, though there is still a preventable mortality; the complexity of medical and surgical interventions, increasingly older and sicker patients, has created a host of new hazards in anesthesiology. In this paper, some of these perioperative (PO) fatal adverse events are investigated in terms of health responsibility. Selective literature research in several data bases, concerning perioperative and anesthetic deaths and medical responsibility, was performed. Main text: A generally accepted definition of the anesthesia and perioperatory-related death still remains one of the major concerns in forensic pathology, and the terms “operative deaths” and “anesthetic deaths” are usually applied inaccurately within the medico-legal literature. Such events involve comprehensively PO fatalities and allow for subtle separation of natural and unnatural death, at least from the prospective of forensic pathology. Iatrogenic deaths in this field can be separated into some major categories, as attributable to previous patient’s unfavorable conditions or depending from surgical procedure per se (such as PO cardiac and cerebrovascular events). In this review, the authors carried out syntheses of specific research areas regarding epidemiology, complications of general and spinal anesthetic, failure in airway management and patient’s circulatory homeostasis, and adverse drugs reactions; analysis considering the challenge of anesthetic-related mortality, epidemiology and classifications, by indicating causal chain of death, in respect of both contributing and associated anesthetic and surgery facts. Conclusions: Perioperative quality control programs and its relevance for medico-legal evaluation are emphasized as, although mortality rates have decreased worldwide over the last decades, however, preventable drug-related deaths still happen. Such fatal events have to be considered within the field of forensic pathology experts, with regard of malpractice claims, to implement a strategy for preventing potentially fatal complications
Optimal Time-Reversal of Multi-phase Equatorial States
Even though the time-reversal is unphysical (it corresponds to the complex
conjugation of the density matrix), for some restricted set of states it can be
achieved unitarily, typically when there is a common de-phasing in a n-level
system. However, in the presence of multiple phases (i. e. a different
de-phasing for each element of an orthogonal basis occurs) the time reversal is
no longer physically possible. In this paper we derive the channel which
optimally approaches in fidelity the time-reversal of multi-phase equatorial
states in arbitrary (finite) dimension. We show that, in contrast to the
customary case of the Universal-NOT on qubits (or the universal conjugation in
arbitrary dimension), the optimal phase covariant time-reversal for equatorial
states is a nonclassical channel, which cannot be achieved via a
measurement/preparation procedure. Unitary realizations of the optimal
time-reversal channel are given with minimal ancillary dimension, exploiting
the simplex structure of the optimal maps.Comment: 7 pages, minor change
Physical realizations of quantum operations
Quantum operations (QO) describe any state change allowed in quantum
mechanics, such as the evolution of an open system or the state change due to a
measurement. We address the problem of which unitary transformations and which
observables can be used to achieve a QO with generally different input and
output Hilbert spaces. We classify all unitary extensions of a QO, and give
explicit realizations in terms of free-evolution direct-sum dilations and
interacting tensor-product dilations. In terms of Hilbert space dimensionality
the free-evolution dilations minimize the physical resources needed to realize
the QO, and for this case we provide bounds for the dimension of the ancilla
space versus the rank of the QO. The interacting dilations, on the other hand,
correspond to the customary ancilla-system interaction realization, and for
these we derive a majorization relation which selects the allowed unitary
interactions between system and ancilla.Comment: 8 pages, no figures. Accepted for publication on Phys. Rev.
Intraoperative measurement of parathyroid hormone: A Copernican revolution in the surgical treatment of hyperparathyroidism
Intraoperative parathyroid hormone (PTH) monitoring in the setting of the operating room represents a valuable example of the rationale use of the laboratory diagnostic in a patient-oriented approach. Rapid intraoperative PTH (ioPTH) assay is a valid tool for an accurate evaluation of the success of parathyroid surgery. The reliability of the user-friendly portable systems as well as the collaboration between operators and surgical staff allow the one-site monitoring of the ioPTH decrements on the course of the surgical management of hyperparathyroidism.The rapid answer provided by an effective decrement of PTH during parathyroidectomy contributes dramatically to the efficacy of parathyroid surgery and the reduction of the number of re-operations. Therefore the dose of ioPTH is a valid and reliable support for the success of the intervention of parathyroidectomy at controlled costs
Contracts for Abstract Processes in Service Composition
Contracts are a well-established approach for describing and analyzing
behavioral aspects of web service compositions. The theory of contracts comes
equipped with a notion of compatibility between clients and servers that
ensures that every possible interaction between compatible clients and servers
will complete successfully. It is generally agreed that real applications often
require the ability of exposing just partial descriptions of their behaviors,
which are usually known as abstract processes. We propose a formal
characterization of abstraction as an extension of the usual symbolic
bisimulation and we recover the notion of abstraction in the context of
contracts.Comment: In Proceedings FIT 2010, arXiv:1101.426
Universal and phase covariant superbroadcasting for mixed qubit states
We describe a general framework to study covariant symmetric broadcasting
maps for mixed qubit states. We explicitly derive the optimal N to M
superbroadcasting maps, achieving optimal purification of the single-site
output copy, in both the universal and the phase covariant cases. We also study
the bipartite entanglement properties of the superbroadcast states.Comment: 19 pages, 8 figures, strictly related to quant-ph/0506251 and
quant-ph/051015
A bizarre foreign body in the appendix: A case report
Foreign bodies are rare causes of appendicitis and, in most cases, ingested foreign bodies pass through the alimentary tract asymptomatically. However, ingested foreign bodies may sometimes remain silent within the appendix for many years without an inflammatory response. Despite the fact that cases of foreign-body-induced appendicitis have been documented, sharp and pointed objects are more likely to cause perforations and abscesses, and present more rapidly after ingestion. Various materials, such as needles and drill bits, as well as organic matter, such as seeds, have been implicated as causes of acute appendicitis. Clinical presentation can vary from hours to years. Blunt foreign bodies are more likely to remain dormant for longer periods and cause appendicitis through obstruction of the appendiceal lumen. We herein describe a patient presenting with a foreign body in his appendix which had been swallowed 15 years previously. The contrast between the large size of the foreign body, the long clinical history without symptoms and the total absence of any histological inflammation was notable. We suggest that an elective laparoscopic appendectomy should be offered to such patients as a possible management optio
Late postpancreatectomy hemorrhage after pancreaticoduodenectomy: is it possible to recognize risk factors?
CONTEXT: Post-pancreatectomy hemorrhage is one of the most common complications after pancreaticoduodenectomy.
OBJECTIVE: To evaluate the late post-pancreatectomy hemorrhage rate according to the International Study Group of Pancreatic Surgery criteria and to recognize factors related to its onset.
METHODS: A prospective study of 113 patients who underwent pancreaticoduodenectomy was conducted. Late post-pancreatectomy hemorrhage was defined according to the criteria of the International Study Group of Pancreatic Surgery. Demographic, clinical, surgical and pathological data were considered and related to late post-pancreatectomy hemorrhage.
RESULTS: Thirty-one (27.4%) patients had a post-pancreatectomy hemorrhage. Twenty-five (22.1%) patients developed late post-pancreatectomy hemorrhage: 19 (16.8%) grade B, 6 (5.3%) grade C. Surgical re-operation was performed in 2 out of the 25 cases with late post-pancreatectomy hemorrhage (8.0%) grade C associated with postoperative pancreatic fistula. At univariate analysis, the only factor significantly related to late post-pancreatectomy hemorrhage was postoperative pancreatic fistula (P<0.001). Multivariate analysis underlined that the severity of postoperative pancreatic fistula (P<0.001) and pancreatic anastomosis (P=0.049) independently increased the risk of late hemorrhage.
CONCLUSION: In patients undergoing pancreaticoduodenectomy, the criteria introduced by International Study Group of Pancreatic Surgery to define late postpancreatectomy hemorrhage are related to a higher incidence of hemorrhage than previously detected because they considered also mild hemorrhage
Electrospun PHEA-PLA/PCL Scaffold for Vascular Regeneration: A Preliminary in\ua0Vivo Evaluation
Background. There is increasing interest in the development of vessel substitutes, and many studies are currently focusing on the development of biodegradable scaffolds capable of fostering vascular regeneration. We tested a new biocompatible and biodegradable material with mechanical properties similar to those of blood vessels.
Methods. The material used comprises a mixture of a,b-poly(N-2-hydroxyethyl)-D,L-aspartamide (PHEA) and polylactic acid (PLA), combined with polycaprolactone (PCL) by means of electrospinning technique. Low-molecular-weight heparin was also linked to the copolymer. A tubular PHEA-PLA/PCL sample was used to create an arteriovenous fistula in a pig model with the use of the external iliac vessels. The flow was assessed by means of Doppler ultrasound examination weekly, and 1 month after the implantation we removed the scaffold for histopathologic evaluation.
Results. The implants showed a perfect leak-proof seal and adequate elastic tension to blood pressure. About w3 weeks after the implantation, Doppler examination revealed thrombosis of the graft, so we proceeded to its removal. Histologic examination showed chronic inflammation, with the presence of foreign body cells and marked neovascularization. The material had been largely absorbed, leaving some isolated spot residues.
Conclusions. The biocompatibility of PHEA-PLA/PCL and its physical properties make it suitable for the replacement of vessels. In the future, the possibility of functionalizing the material with a variety of molecules, to modulate the inflammatory and coagulative responses, will allow obtaining devices suitable for the replacement of native vessels
The Quantum Reverse Shannon Theorem based on One-Shot Information Theory
The Quantum Reverse Shannon Theorem states that any quantum channel can be
simulated by an unlimited amount of shared entanglement and an amount of
classical communication equal to the channel's entanglement assisted classical
capacity. In this paper, we provide a new proof of this theorem, which has
previously been proved by Bennett, Devetak, Harrow, Shor, and Winter. Our proof
has a clear structure being based on two recent information-theoretic results:
one-shot Quantum State Merging and the Post-Selection Technique for quantum
channels.Comment: 30 pages, 4 figures, published versio
- …
