133 research outputs found
Wall Adhesion and Constitutive Modelling of Strong Colloidal Gels
Wall adhesion effects during batch sedimentation of strongly flocculated
colloidal gels are commonly assumed to be negligible. In this study in-situ
measurements of colloidal gel rheology and solids volume fraction distribution
suggest the contrary, where significant wall adhesion effects are observed in a
110mm diameter settling column. We develop and validate a mathematical model
for the equilibrium stress state in the presence of wall adhesion under both
viscoplastic and viscoelastic constitutive models. These formulations highlight
fundamental issues regarding the constitutive modeling of colloidal gels,
specifically the relative utility and validity of viscoplastic and viscoelastic
rheological models under arbitrary tensorial loadings. The developed model is
validated against experimental data, which points toward a novel method to
estimate the shear and compressive yield strength of strongly flocculated
colloidal gels from a series of equilibrium solids volume fraction profiles
over various column widths.Comment: 37 pages, 12 figures, submitted to Journal of Rheolog
Delayed collapse of concentrated dispersions flocculated in a secondary minimum
The effect of volume fraction, varied from ca. 0.05 to 0.5 on the rigidity
and induction time for collapse are presented. The effect of centrifugal
acceleration is examined also. It is argued that scalings of the data are
consistent with the idea coming from the LAMPPS simulations of Zia et al.
(Journal of Rheology 2014) that coarsening occurs by means of Interfacial
diffusion and fluidisation.Comment: An extended abstract of 6 pages with 6 figs. Comments (to RB) are
most welcom
Restructuring of colloidal aggregates in shear flow: Coupling interparticle contact models with Stokesian dynamics
A method to couple interparticle contact models with Stokesian dynamics (SD)
is introduced to simulate colloidal aggregates under flow conditions. The
contact model mimics both the elastic and plastic behavior of the cohesive
connections between particles within clusters. Owing to this, clusters can
maintain their structures under low stress while restructuring or even breakage
may occur under sufficiently high stress conditions. SD is an efficient method
to deal with the long-ranged and many-body nature of hydrodynamic interactions
for low Reynolds number flows. By using such a coupled model, the restructuring
of colloidal aggregates under stepwise increasing shear flows was studied.
Irreversible compaction occurs due to the increase of hydrodynamic stress on
clusters. Results show that the greater part of the fractal clusters are
compacted to rod-shaped packed structures, while the others show isotropic
compaction.Comment: A simulation movie be found at
http://www-levich.engr.ccny.cuny.edu/~seto/sites/colloidal_aggregates_shearflow.htm
Quantitative imaging of concentrated suspensions under flow
We review recent advances in imaging the flow of concentrated suspensions,
focussing on the use of confocal microscopy to obtain time-resolved information
on the single-particle level in these systems. After motivating the need for
quantitative (confocal) imaging in suspension rheology, we briefly describe the
particles, sample environments, microscopy tools and analysis algorithms needed
to perform this kind of experiments. The second part of the review focusses on
microscopic aspects of the flow of concentrated model hard-sphere-like
suspensions, and the relation to non-linear rheological phenomena such as
yielding, shear localization, wall slip and shear-induced ordering. Both
Brownian and non-Brownian systems will be described. We show how quantitative
imaging can improve our understanding of the connection between microscopic
dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of
methodology. Submitted for special volume 'High Solid Dispersions' ed. M.
Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009);
22 pages, 16 fig
- …