25 research outputs found

    A yeast model for target-primed (non-LTR) retrotransposition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Target-primed (non-LTR) retrotransposons, such as the human L1 element, are mobile genetic elements found in many eukaryotic genomes. They are often present in large numbers and their retrotransposition can cause mutations and genomic rearrangements. Despite their importance, many aspects of their replication are not well understood.</p> <p>Results</p> <p>We have developed a yeast model system for studying target-primed retrotransposons. This system uses the Zorro3 element from <it>Candida albicans</it>. A cloned copy of Zorro3, tagged with a retrotransposition indicator gene, retrotransposes at a high frequency when introduced into an appropriate <it>C. albicans </it>host strain. Retrotransposed copies of the tagged element exhibit similar features to the native copies, indicating that the natural retrotransposition pathway is being used. Retrotransposition is dependent on the products of the tagged element's own genes and is highly temperature-regulated. The new assay permits the analysis of the effects of specific mutations introduced into the cloned element.</p> <p>Conclusion</p> <p>This Zorro3 retrotransposition assay system complements previously available target-primed retrotransposition assays. Due to the relative simplicity of the growth, manipulation and analysis of yeast cells, the system should advance our understanding of target-primed retrotransposition.</p

    Teneurin Structures Are Composed of Ancient Bacterial Protein Domains

    Get PDF
    Pioneering bioinformatic analysis using sequence data revealed that teneurins evolved from bacterial tyrosine-aspartate (YD)-repeat protein precursors. Here, we discuss how structures of the C-terminal domain of teneurins, determined using X-ray crystallography and electron microscopy, support the earlier findings on the proteins’ ancestry. This chapter describes the structure of the teneurin scaffold with reference to a large family of teneurin-like proteins that are widespread in modern prokaryotes. The central scaffold of modern eukaryotic teneurins is decorated by additional domains typically found in bacteria, which are re-purposed in eukaryotes to generate highly multifunctional receptors. We discuss how alternative splicing contributed to further diversifying teneurin structure and thereby function. This chapter traces the evolution of teneurins from a structural point of view and presents the state-of-the-art of how teneurin function is encoded by its specific structural features

    The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device

    Get PDF
    The ABC toxin complexes produced by certain bacteria are of interest owing to their potent insecticidal activity(1,2) and potential role in human disease(3). These complexes comprise at least three proteins (A, B and C), which must assemble to be fully toxic(4). The carboxyterminal region of the C protein is the main cytotoxic component(5), and is poorly conserved between different toxin complexes. A general model of action has been proposed, in which the toxin complex binds to the cell surface via the A protein, is endocytosed, and subsequently forms a pH-triggered channel, allowing the translocation of C into the cytoplasm, where it can cause cytoskeletal disruption in both insect and mammalian cells(5). Toxin complexes have been visualized using single-particle electron microscopy(6,7), but no high-resolution structures of the components are available, and the role of the B protein in the mechanism of toxicity remains unknown. Here we report the three-dimensional structure of the complex formed between the B and C proteins, determined to 2.5 angstrom by X-ray crystallography. These proteins assemble to form an unprecedented, large hollow structure that encapsulates and sequesters the cytotoxic, C-terminal region of the C protein like the shell of an egg. The shell is decorated on one end by a beta-propeller domain, which mediates attachment of the B-C heterodimer to the A protein in the native complex. The structure reveals how C auto-proteolyses when folded in complex with B. The C protein is the first example, to our knowledge, of a structure that contains rearrangement hotspot (RHS) repeats(8), and illustrates a marked structural architecture that is probably conserved across both this widely distributed bacterial protein family and the related eukaryotic tyrosine-aspartate (YD)-repeat-containing protein family, which includes the teneurins(9). The structure provides the first clues about the function of these protein repeat families, and suggests a generic mechanism for protein encapsulation and delivery

    Reduced fire severity offers near-term buffer to climate-driven declines in conifer resilience across the western United States

    Get PDF
    Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration. © 2023 the Author(s)

    An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples.

    Get PDF
    MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed.  Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination

    Teneurin structures are composed of ancient bacterial protein domains

    No full text
    Pioneering bioinformatic analysis using sequence data revealed that teneurins evolved from bacterial tyrosine-aspartate (YD)-repeat protein precursors. Here, we discuss how structures of the C-terminal domain of teneurins, determined using X-ray crystallography and electron microscopy, support the earlier findings on the proteins’ ancestry. This chapter describes the structure of the teneurin scaffold with reference to a large family of teneurin-like proteins that are widespread in modern prokaryotes. The central scaffold of modern eukaryotic teneurins is decorated by additional domains typically found in bacteria, which are re-purposed in eukaryotes to generate highly multifunctional receptors. We discuss how alternative splicing contributed to further diversifying teneurin structure and thereby function. This chapter traces the evolution of teneurins from a structural point of view and presents the state-of-the-art of how teneurin function is encoded by its specific structural features

    Structural analysis of Chi1 Chitinase from Yen-tc: The multisubunit insecticidal ABC toxin complex of Yersinia entomophaga

    No full text
    Yersinia entomophaga MH96 is a native New Zealand soil bacterium that secretes a large ABC-type protein toxin complex, Yen-Tc, similar to those produced by nematode-associated bacteria such as Photorhabdus luminescens. Y. entomophaga displays an exceptionally virulent pathogenic phenotype in sensitive insect species, causing death within 72 h of infection. Because of this phenotype, there is intrinsic interest in the mechanism of action of Yen-Tc, and it also has the potential to function as a novel class of biopesticide. We have identified genes that encode chitinases as part of the toxin complex loci in Y. entomophaga MH96, P. luminescens, Photorhabdus asymbiotica and Xenorhabdus nematophila. Furthermore, we have shown that the secreted toxin complex from Y. entomophaga MH96 includes two chitinases as an integral part of the complex, a feature not described previously in other ABC toxins and possibly related to the severe disease caused by this bacterium. We present here the structure of the Y. entomophaga MH96 Chi1 chitinase, determined by X-ray crystallography to 1.74 angstrom resolution, and show that a ring of five symmetrically arranged lobes on the surface of the Yen-Tc toxin complex structure, as determined by single-particle electron microscopy, provides a good fit to the Chi1 monomer. We also confirm that the isolated chitinases display endochitinase activity, as does the complete toxin complex. (C) 2011 Elsevier Ltd. All rights reserved

    Early Mesozoic tectonic evolution of the western U.S. Cordillera

    No full text
    The early Mesozoic evolution of the U. S. Cordillera differs greatly from its previous history of mainly miogeoclinal sedimentation with outboard marginal-basin-island-arc mobile zones. The Early Mississippian and Permian-Triassic thrust emplacement of eugeoclinal strata across the miogeocline signaled the initial propagation of subduction-related tectonism onto the sialic edge. Following these events, the sialic edge and the resulting accreted terranes became an active continental margin. The active margin history records not only eastward subduction of oceanic crust beneath North America, but also the formation, migration, and accretion of marginal basin and fringing island-arc systems along the continental margin. At the close of the Jurassic, the fringing arc-marginal basin system collapsed, resulting in a more direct interaction of major Pacific basin plates with hte Cordilleran margin. Such interactions are manifested by Andean and San Andreas types of marginal regimes which characterized the Cretaceous and Cenozoic. In this chapter we will discuss the tectonic evolution of the U. S. Cordilleran margin during the early phases of its active margin history (Triassic through Jurassic)

    Early Mesozoic tectonic evolution of the western U.S. Cordillera

    No full text
    The early Mesozoic evolution of the U. S. Cordillera differs greatly from its previous history of mainly miogeoclinal sedimentation with outboard marginal-basin-island-arc mobile zones. The Early Mississippian and Permian-Triassic thrust emplacement of eugeoclinal strata across the miogeocline signaled the initial propagation of subduction-related tectonism onto the sialic edge. Following these events, the sialic edge and the resulting accreted terranes became an active continental margin. The active margin history records not only eastward subduction of oceanic crust beneath North America, but also the formation, migration, and accretion of marginal basin and fringing island-arc systems along the continental margin. At the close of the Jurassic, the fringing arc-marginal basin system collapsed, resulting in a more direct interaction of major Pacific basin plates with hte Cordilleran margin. Such interactions are manifested by Andean and San Andreas types of marginal regimes which characterized the Cretaceous and Cenozoic. In this chapter we will discuss the tectonic evolution of the U. S. Cordilleran margin during the early phases of its active margin history (Triassic through Jurassic)

    Teneurin structures are composed of ancient bacterial protein domains

    No full text
    Pioneering bioinformatic analysis using sequence data revealed that teneurins evolved from bacterial tyrosine-aspartate (YD)-repeat protein precursors. Here, we discuss how structures of the C-terminal domain of teneurins, determined using X-ray crystallography and electron microscopy, support the earlier findings on the proteins’ ancestry. This chapter describes the structure of the teneurin scaffold with reference to a large family of teneurin-like proteins that are widespread in modern prokaryotes. The central scaffold of modern eukaryotic teneurins is decorated by additional domains typically found in bacteria, which are re-purposed in eukaryotes to generate highly multifunctional receptors. We discuss how alternative splicing contributed to further diversifying teneurin structure and thereby function. This chapter traces the evolution of teneurins from a structural point of view and presents the state-of-the-art of how teneurin function is encoded by its specific structural features
    corecore