16,296 research outputs found
A Careers Perspective on Entrepreneurship
[Excerpt] What if being an entrepreneur were treated like any other occupation—teacher, nurse, manager? What if the decision to found a new venture were thought of as one of many options that individuals consider as they try to structure a meaningful and rewarding career? How would the field of entrepreneurship research be different? In our view, there is much to be learned by conceiving of entrepreneurship not solely as a final destination, but as a step along a career trajectory. Doing so opens the study of entrepreneurship to a wider range of scholarly insights, and promises important insights for entrepreneurial practice, training, and policy. This special issue takes an important step in this direction
On the stability of travelling waves with vorticity obtained by minimisation
We modify the approach of Burton and Toland [Comm. Pure Appl. Math. (2011)]
to show the existence of periodic surface water waves with vorticity in order
that it becomes suited to a stability analysis. This is achieved by enlarging
the function space to a class of stream functions that do not correspond
necessarily to travelling profiles. In particular, for smooth profiles and
smooth stream functions, the normal component of the velocity field at the free
boundary is not required a priori to vanish in some Galilean coordinate system.
Travelling periodic waves are obtained by a direct minimisation of a functional
that corresponds to the total energy and that is therefore preserved by the
time-dependent evolutionary problem (this minimisation appears in Burton and
Toland after a first maximisation). In addition, we not only use the
circulation along the upper boundary as a constraint, but also the total
horizontal impulse (the velocity becoming a Lagrange multiplier). This allows
us to preclude parallel flows by choosing appropriately the values of these two
constraints and the sign of the vorticity. By stability, we mean conditional
energetic stability of the set of minimizers as a whole, the perturbations
being spatially periodic of given period.Comment: NoDEA Nonlinear Differential Equations and Applications, to appea
Fixed parameter tractable algorithms in combinatorial topology
To enumerate 3-manifold triangulations with a given property, one typically
begins with a set of potential face pairing graphs (also known as dual
1-skeletons), and then attempts to flesh each graph out into full
triangulations using an exponential-time enumeration. However, asymptotically
most graphs do not result in any 3-manifold triangulation, which leads to
significant "wasted time" in topological enumeration algorithms. Here we give a
new algorithm to determine whether a given face pairing graph supports any
3-manifold triangulation, and show this to be fixed parameter tractable in the
treewidth of the graph.
We extend this result to a "meta-theorem" by defining a broad class of
properties of triangulations, each with a corresponding fixed parameter
tractable existence algorithm. We explicitly implement this algorithm in the
most generic setting, and we identify heuristics that in practice are seen to
mitigate the large constants that so often occur in parameterised complexity,
highlighting the practicality of our techniques.Comment: 16 pages, 9 figure
Investigation of a pulsed electrothermal thruster system
The performance of an ablative wall Pulsed Electrothermal (PET) thruster is accurately characterized on a calibrated thrust stand, using polyethylene propellant. The thruster is tested for four configurations of capillary length and pulse length. The exhaust velocity is determined with twin time-of-flight photodiode stagnation probes, and the ablated mass is measured from the loss over ten shots. Based on the measured thrust impulse and the ablated mass, the specific impulse varies from 1000 to 1750 seconds. The thrust to power varies from .05 N/kW (quasi-steady mode) to .10 N/kW (unsteady mode). The thruster efficiency varies from .56 at 1000 seconds to .42 at 1750 seconds. A conceptual design is presented for a 40 kW PET propulsion system. The point design system performance is .62 system efficiency at 1000 seconds specific impulse. The system's reliability is enhanced by incorporating 20, 20 kW thruster modules which are fired in pairs. The thruster design is non-ablative, and uses water propellant, from a central storage tank, injected through the cathode
UNSWIRF: A Tunable Imaging Spectrometer for the Near-Infrared
We describe the specifications, characteristics, calibration, and analysis of
data from the University of New South Wales Infrared Fabry-Perot (UNSWIRF)
etalon. UNSWIRF is a near-infrared tunable imaging spectrometer, used primarily
in conjunction with IRIS on the AAT, but suitable for use as a visitor
instrument at other telescopes. The etalon delivers a resolving power in excess
of 4000 (corresponding to a velocity resolution ~75 km/s), and allows imaging
of fields up to 100" in diameter on the AAT at any wavelength between 1.5 and
2.4 microns for which suitable blocking filters are available.Comment: 16 pages, 10 figures, uses psfig.sty and html.sty (included). To
appear in Publications of the Astronomical Society of Australi
An ASCA Study of the W51 Complex
We present the analysis of ASCA archival data from the Galactic source W51.
The ASCA spectra show that the soft (kT<= 2.5 keV) X-rays are of thermal origin
and are compatible with W51C being a single, isothermal (kT~0.3 keV) supernova
remnant at the far-side of the Sagittarius arm. The ASCA images reveal hard
(kT>=2.5 keV) X-ray sources which were not seen in previous X-ray observations.
Some of these sources are coincident with massive star-forming regions and the
spectra are used to derive X-ray parameters. By comparing the X-ray absorbing
column density with atomic hydrogen column density, we infer the location of
star-forming regions relative to molecular clouds. There are unidentified hard
X-ray sources superposed on the supernova remnant and we discuss the
possibility of their association.Comment: 13 pages, 11 figures, to be published in Astronomical Journa
The properties of the Galactic bar implied by gas kinematics in the inner Milky Way
Longitude-velocity (l-V) diagrams of H I and CO gas in the inner Milky Way
have long been known to be inconsistent with circular motion in an axisymmetric
potential. Several lines of evidence suggest that the Galaxy is barred, and gas
flow in a barred potential could be consistent with the observed ``forbidden''
velocities and other features in the data. We compare the H I observations to
l-V diagrams synthesized from 2-D fluid dynamical simulations of gas flows in a
family of barred potentials. The gas flow pattern is very sensitive to the
parameters of the assumed potential, which allows us to discriminate among
models. We present a model that reproduces the outer contour of the H I l-V
diagram reasonably well; this model has a strong bar with a semimajor axis of
3.6 kpc, an axis ratio of approximately 3:1, an inner Lindblad resonance (ILR),
and a pattern speed of 42 km/s/kpc, and matches the data best when viewed from
34\deg to the bar major axis. The behavior of the models, combined with the
constraint that the shocks in the Milky Way bar should resemble those in
external barred galaxies, leads us to conclude that wide ranges of parameter
space are incompatible with the observations. In particular we suggest that the
bar must be fairly strong, must have an ILR, and cannot be too end-on, with the
bar major axis at 35\deg +/- 5\deg to the line of sight. The H I data exhibit
larger forbidden velocities over a wider longitude range than are seen in
molecular gas; this important difference is the reason our favored model
differs so significantly from other recently proposed models.Comment: 23 pages, 14 figures, 1 table, uses emulateapj and psfig, 640 kb.
Submitted to Ap
Spiral Evolution in a Confined Geometry
Supported nanoscale lead crystallites with a step emerging from a
non-centered screw dislocation on the circular top facet were prepared by rapid
cooling from just above the melting temperature. STM observations of the top
facet show a nonuniform rotation rate and shape of the spiral step as the
crystallite relaxes. These features can be accurately modeled using curvature
driven dynamics, as in classical models of spiral growth, with boundary
conditions fixing the dislocation core and regions of the step lying along the
outer facet edge.Comment: 4 pages, 3 figures, to be published in Physical Review Letter
- …