14,891 research outputs found

    Thermalization, Error-Correction, and Memory Lifetime for Ising Anyon Systems

    Full text link
    We consider two-dimensional lattice models that support Ising anyonic excitations and are coupled to a thermal bath. We propose a phenomenological model for the resulting short-time dynamics that includes pair-creation, hopping, braiding, and fusion of anyons. By explicitly constructing topological quantum error-correcting codes for this class of system, we use our thermalization model to estimate the lifetime of the quantum information stored in the encoded spaces. To decode and correct errors in these codes, we adapt several existing topological decoders to the non-Abelian setting. We perform large-scale numerical simulations of these two-dimensional Ising anyon systems and find that the thresholds of these models range between 13% to 25%. To our knowledge, these are the first numerical threshold estimates for quantum codes without explicit additive structure.Comment: 34 pages, 9 figures; v2 matches the journal version and corrects a misstatement about the detailed balance condition of our Metropolis simulations. All conclusions from v1 are unaffected by this correctio

    Understanding person acquisition using an interactive activation and competition network

    No full text
    Face perception is one of the most developed visual skills that humans display, and recent work has attempted to examine the mechanisms involved in face perception through noting how neural networks achieve the same performance. The purpose of the present paper is to extend this approach to look not just at human face recognition, but also at human face acquisition. Experiment 1 presents empirical data to describe the acquisition over time of appropriate representations for newly encountered faces. These results are compared with those of Simulation 1, in which a modified IAC network capable of modelling the acquisition process is generated. Experiment 2 and Simulation 2 explore the mechanisms of learning further, and it is demonstrated that the acquisition of a set of associated new facts is easier than the acquisition of individual facts in isolation of one another. This is explained in terms of the advantage gained from additional inputs and mutual reinforcement of developing links within an interactive neural network system. <br/

    Rotational quenching rate coefficients for H_2 in collisions with H_2 from 2 to 10,000 K

    Get PDF
    Rate coefficients for rotational transitions in H_2 induced by H_2 impact are presented. Extensive quantum mechanical coupled-channel calculations based on a recently published (H_2)_2 potential energy surface were performed. The potential energy surface used here is presumed to be more reliable than surfaces used in previous work. Rotational transition cross sections with initial levels J <= 8 were computed for collision energies ranging between 0.0001 and 2.5 eV, and the corresponding rate coefficients were calculated for the temperature range 2 < T <10,000 K. In general, agreement with earlier calculations, which were limited to 100-6000 K, is good though discrepancies are found at the lowest and highest temperatures. Low-density-limit cooling functions due to para- and ortho-H_2 collisions are obtained from the collisional rate coefficients. Implications of the new results for non-thermal H_2 rotational distributions in molecular regions are also investigated

    The molecular environment of massive star forming cores associated with Class II methanol maser emission

    Full text link
    Methanol maser emission has proven to be an excellent signpost of regions undergoing massive star formation (MSF). To investigate their role as an evolutionary tracer, we have recently completed a large observing program with the ATCA to derive the dynamical and physical properties of molecular/ionised gas towards a sample of MSF regions traced by 6.7 GHz methanol maser emission. We find that the molecular gas in many of these regions breaks up into multiple sub-clumps which we separate into groups based on their association with/without methanol maser and cm continuum emission. The temperature and dynamic state of the molecular gas is markedly different between the groups. Based on these differences, we attempt to assess the evolutionary state of the cores in the groups and thus investigate the role of class II methanol masers as a tracer of MSF.Comment: 5 pages, 1 figure, IAU Symposium 242 Conference Proceeding

    Infrared images of reflection nebulae and Orion's bar: Fluorescent molecular hydrogen and the 3.3 micron feature

    Get PDF
    Images were obtained of the (fluorescent) molecular hydrogen 1-0 S(1) line, and of the 3.3 micron emission feature, in Orion's Bar and three reflection nebulae. The emission from these species appears to come from the same spatial locations in all sources observed. This suggests that the 3.3 micron feature is excited by the same energetic UV-photons which cause the molecular hydrogen to fluoresce

    Intercellular signaling as a cause of cell death in cyclically impacted cartilage explants

    Get PDF
    AbstractRecently, in vitro cartilage studies have shown that impact loading can produce structural damage and osteoarthritis-like changes, including tissue swelling, collagen denaturation, and cell death.Objective This study was to determine whether a signal for cell death moves through the cartilage matrix, resulting in the spread of cell death over time from impacted to unimpacted regions.Design Cyclic impacts were applied to the 2mm core of 4mm cartilage discs. Post-impact culturing extended for 3, 6 or 21 days and occurred in one of two ways. In one, discs were cultured intact. In the second, cores were removed immediately after cessation of impact and cores and rings cultured separately. Cells in apoptosis and later stage necrosis were monitored using the TUNEL assay.Results The extent of cell death in impacted samples increased with increased duration of post-impact culturing. At the early time, the majority of cell death was located in the regions of direct impact whereas after extended culture, the extent of cell death was similar in the surrounding unimpacted regions and in the impacted core region. However, the physical separation of the impacted core from the surrounding, non-impacted ring regions immediately after impact, and prior to independent culture, kept the level of cell death in the surrounding ring close to control levels, even after 21 days of incubation.Discussion These findings indicate that soluble intercellular signalling is involved in the spreading of cell death through the cartilage matrix, and that its effects can be prevented by physical isolation of the surrounding ring from the impacted core
    corecore