497 research outputs found

    Surface Effects in Magnetic Microtraps

    Full text link
    We have investigated Bose-Einstein condensates and ultra cold atoms in the vicinity of a surface of a magnetic microtrap. The atoms are prepared along copper conductors at distances to the surface between 300 um and 20 um. In this range, the lifetime decreases from 20 s to 0.7 s showing a linear dependence on the distance to the surface. The atoms manifest a weak thermal coupling to the surface, with measured heating rates remaining below 500 nK/s. In addition, we observe a periodic fragmentation of the condensate and thermal clouds when the surface is approached.Comment: 4 pages, 4 figures; v2: corrected references; v3: final versio

    On the stability of standing matter waves in a trap

    Get PDF
    We discuss excited Bose-condensed states and find the criterion of dynamical stability of a kink-wise state, i.e., a standing matter wave with one nodal plane perpendicular to the axis of a cylindrical trap. The dynamical stability requires a strong radial confinement corresponding to the radial frequency larger than the mean-field interparticle interaction. We address the question of thermodynamic instability related to the presence of excitations with negative energy.Comment: 4 pages, 3 figure

    Testing quantum correlations in a confined atomic cloud by scattering fast atoms

    Full text link
    We suggest measuring one-particle density matrix of a trapped ultracold atomic cloud by scattering fast atoms in a pure momentum state off the cloud. The lowest-order probability of the inelastic process, resulting in a pair of outcoming fast atoms for each incoming one, turns out to be given by a Fourier transform of the density matrix. Accordingly, important information about quantum correlations can be deduced directly from the differential scattering cross-section. A possible design of the atomic detector is also discussed.Comment: 5 RevTex pages, no figures, submitted to PR

    The Spectra of Heterotic Standard Model Vacua

    Get PDF
    A formalism for determining the massless spectrum of a class of realistic heterotic string vacua is presented. These vacua, which consist of SU(5) holomorphic bundles on torus-fibered Calabi-Yau threefolds with fundamental group Z_2, lead to low energy theories with standard model gauge group (SU(3)_C x SU(2)_L x U(1)_Y)/Z_6 and three families of quarks and leptons. A methodology for determining the sheaf cohomology of these bundles and the representation of Z_2 on each cohomology group is given. Combining these results with the action of a Z_2 Wilson line, we compute, tabulate and discuss the massless spectrum.Comment: 41+1pp, 2 fig

    Input-output theory for fermions in an atom cavity

    Full text link
    We generalize the quantum optical input-output theory developed for optical cavities to ultracold fermionic atoms confined in a trapping potential, which forms an "atom cavity". In order to account for the Pauli exclusion principle, quantum Langevin equations for all cavity modes are derived. The dissipative part of these multi-mode Langevin equations includes a coupling between cavity modes. We also derive a set of boundary conditions for the Fermi field that relate the output fields to the input fields and the field radiated by the cavity. Starting from a constant uniform current of fermions incident on one side of the cavity, we use the boundary conditions to calculate the occupation numbers and current density for the fermions that are reflected and transmitted by the cavity

    Barrier effects on the collective excitations of split Bose-Einstein condensates

    Full text link
    We investigate the collective excitations of a single-species Bose gas at T=0 in a harmonic trap where the confinement undergoes some splitting along one spatial direction. We mostly consider onedimensional potentials consisting of two harmonic wells separated a distance 2 z_0, since they essentially contain all the barrier effects that one may visualize in the 3D situation. We find, within a hydrodynamic approximation, that regardless the dimensionality of the system, pairs of levels in the excitation spectrum, corresponding to neighbouring even and odd excitations, merge together as one increases the barrier height up to the current value of the chemical potential. The excitation spectra computed in the hydrodynamical or Thomas-Fermi limit are compared with the results of exactly solving the time-dependent Gross-Pitaevskii equation. We analyze as well the characteristics of the spatial pattern of excitations of threedimensional boson systems according to the amount of splitting of the condensate.Comment: RevTeX, 12 pages, 13 ps figure

    Mean-field analysis of collapsing and exploding Bose-Einstein condensates

    Full text link
    The dynamics of collapsing and exploding trapped Bose-Einstein condensat es caused by a sudden switch of interactions from repulsive to attractive a re studied by numerically integrating the Gross-Pitaevskii equation with atomic loss for an axially symmetric trap. We investigate the decay rate of condensates and the phenomena of bursts and jets of atoms, and compare our results with those of the experiments performed by E. A. Donley {\it et al.} [Nature {\bf 412}, 295 (2001)]. Our study suggests that the condensate decay and the burst production is due to local intermittent implosions in the condensate, and that atomic clouds of bursts and jets are coherent. We also predict nonlinear pattern formation caused by the density instability of attractive condensates.Comment: 7 pages, 8 figures, axi-symmetric results are adde

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe
    corecore