2,711 research outputs found

    Dynamics of Bulk vs. Nanoscale WS_2: Local Strain and Charging Effects

    Full text link
    We measured the infrared vibrational properties of bulk and nanoparticle WS2_2 in order to investigate the structure-property relations in these novel materials. In addition to the symmetry-breaking effects of local strain, nanoparticle curvature modifies the local charging environment of the bulk material. Performing a charge analysis on the \emph{xy}-polarized E1u_{1u} vibrational mode, we find an approximate 1.5:1 intralayer charge difference between the layered 2H material and inorganic fullerene-like (IF) nanoparticles. This effective charge difference may impact the solid-state lubrication properties of nanoscale metal dichalcogenides.Comment: 6 pages, 5 figure

    Galactic Extinction from Colors and Counts of Field Galaxies in WFPC2 Frames: An Application to GRB 970228

    Full text link
    We develop the ``simulated extinction method'' to measure average foreground Galactic extinction from field galaxy number-counts and colors. The method comprises simulating extinction in suitable reference fields by changing the isophotal detection limit. This procedure takes into account selection effects, in particular, the change in isophotal detection limit (and hence in isophotal magnitude completeness limit) with extinction, and the galaxy color--magnitude relation. We present a first application of the method to the HST WFPC2 images of the gamma-ray burster GRB 970228. Four different WFPC2 high-latitude fields, including the HDF, are used as reference to measure the average extinction towards the GRB in the F606W passband. From the counts, we derive an average extinction of A_V = 0.5 mag, but the dispersion of 0.4 mag between the estimates from the different reference fields is significantly larger than can be accounted by Poisson plus clustering uncertainties. Although the counts differ, the average colors of the field galaxies agree well. The extinction implied by the average color difference between the GRB field and the reference galaxies is A_V = 0.6 mag, with a dispersion in the estimated extinction from the four reference fields of only 0.1 mag. All our estimates are in good agreement with the value of 0.81\pm0.27 mag obtained by Burstein & Heiles, and with the extinction of 0.78\pm0.12 measured by Schlegel et al. from maps of dust IR emission. However, the discrepancy between the widely varying counts and the very stable colors in these high-latitude fields is worth investigating.Comment: 14 pages, 2 figures; submitted to the Astrophysical Journa

    The Velocity Function of Galaxies

    Get PDF
    We present a galaxy circular velocity function, Psi(log v), derived from existing luminosity functions and luminosity-velocity relations. Such a velocity function is desirable for several reasons. First, it enables an objective comparison of luminosity functions obtained in different bands and for different galaxy morphologies, with a statistical correction for dust extinction. In addition, the velocity function simplifies comparison of observations with predictions from high-resolution cosmological N-body simulations. We derive velocity functions from five different data sets and find rough agreement among them, but about a factor of 2 variation in amplitude. These velocity functions are then compared with N-body simulations of a LCDM model (corrected for baryonic infall) in order to demonstrate both the utility and current limitations of this approach. The number density of dark matter halos and the slope of the velocity function near v_*, the circular velocity corresponding to an ~L_* spiral galaxy, are found to be comparable to that of observed galaxies. The primary sources of uncertainty in construction of Psi(log v) from observations and N-body simulations are discussed and explanations are suggected to account for these discrepancies.Comment: Latex. 28 pages, 4 figures. Accepted by Ap

    Supernova 1996L: evidence of a strong wind episode before the explosion

    Get PDF
    Observations of the type II SN 1996L reveal the presence of a slowly expanding (V~700$ km/s) shell at ~ 10^(16) cm from the exploding star. Narrow emission features are visible in the early spectra superposed on the normal SN spectrum. Within about two months these features develop narrow symmetric P-Cygni profiles. About 100 days after the explosion the light curve suddenly flattens, the spectral lines broaden and the Halpha flux becomes larger than what is expected from a purely radioactive model. These events are interpreted as signatures of the onset of the interaction between the fast moving ejecta and a slowly moving outer shell of matter ejected before the SN explosion. At about 300 days the narrow lines disappear and the flux drops until the SN fades away, suggesting that the interaction phase is over and that the shell has been swept away. Simple calculations show that the superwind episode started 9 yr before the SN explosion and lasted 6 yr, with an average dM/dt=10^(-3) M_solar/yr. Even at very late epochs (up to day 335) the typical forbidden lines of [OI], CaII], [FeII] remain undetected or very weak. Spectra after day 270 show relatively strong emission lines of HeI. These lines are narrower than other emission lines coming from the SN ejecta, but broader than those from the CSM. These high excitation lines are probably the result of non-thermal excitation and ionization caused by the deposition of the gamma-rays emitted in the decay of radioactive material mixed in the He layer.Comment: 8 pages, 6 figures, Latex, To appear in M.N.R.A.

    A non-Markovian quantum trajectory approach to radiation into structured continuum

    Get PDF
    We present a non-Markovian quantum trajectory method for treating atoms radiating into a reservoir with a non-flat density of states. The results of an example numerical simulation of the case where the free space modes of the reservoir are altered by the presence of a cavity are presented and compared with those of an extended system approach

    Observations of Lick Standard Stars Using the SCORPIO Multi-Slit Unit at the SAO 6-m Telescope

    Get PDF
    We present Lick line-index measurements of standard stars from the list of Worthey. The spectra were taken with the multi-slit unit of the SCORPIO spectrograph at the 6-m Special Astrophysical observatory telescope. We describe in detail our method of analysis and explain the importance of using the Lick index system for studying extragalactic globular clusters. Our results show that the calibration of our instrumental system to the standard Lick system can be performed with high confidence.Comment: 12 pages, 3 figure

    Toy models of crossed Andreev reflection

    Full text link
    We propose toy models of crossed Andreev reflection in multiterminal hybrid structures containing out-of-equilibrium conductors. We apply the description to two possible experiments: (i) to a device containing a large quantum dot inserted in a crossed Andreev reflection circuit. (ii) To a device containing an Aharonov-Bohm loop inserted in a crossed Andreev reflection circuit.Comment: 5 pages, 9 figures, minor modification

    Globular Cluster and Galaxy Formation: M31, the Milky Way and Implications for Globular Cluster Systems of Spiral Galaxies

    Get PDF
    The globular cluster (GC) systems of the Milky Way and of our neighboring spiral galaxy, M31, comprise 2 distinct entities, differing in 3 respects. 1. M31 has young GCs, ages from ~100 Myr to 5 Gyr old, as well as old globular clusters. No such young GCs are known in the Milky Way. 2. We confirm that the oldest M31 GCs have much higher nitrogen abundances than do Galactic GCs at equivalent metallicities. 3. Morrison et al. found M31 has a subcomponent of GCs that follow closely the disk rotation curve of M31. Such a GC system in our own Galaxy has yet to be found. These data are interpreted in terms of the hierarchical-clustering-merging (HCM) paradigm for galaxy formation. We infer that M31 has absorbed more of its dwarf systems than has the Milky Way. This inference has 3 implications: 1. All spiral galaxies likely differ in their GC properties, depending on how many companions each galaxy has, and when the parent galaxy absorbs them. The the Milky Way ties down one end of this spectrum, as almost all of its GCs were absorbed 10-12 Gyr ago. 2. It suggests that young GCs are preferentially formed in the dwarf companions of parent galaxies, and then absorbed by the parent galaxy during mergers. 3. Young GCs seen in tidally-interacting galaxies might come from dwarf companions of these galaxies, rather than be made a-new in the tidal interaction. There is no ready explanation for the marked difference in nitrogen abundance for old M31 GCs relative to the oldest Galactic GCs. The predictions made by Li & Burstein regarding the origin of nitrogen abundance in globular clusters are consistent with what is found for the old M31 GCs compared to that for the two 5 Gyr-old M31 GCs.Comment: to be published in ApJ, Oct 2004; 13 pages of text, 2 tables, 7 postscript figure

    The Distance to SN 1999em from the Expanding Photosphere Method

    Get PDF
    We present optical and IR spectroscopy of the first two months of evolution of the Type II SN 1999em. We combine these data with high-quality optical/IR photometry beginning only three days after shock breakout, in order to study the performance of the ``Expanding Photosphere Method'' (EPM) in the determination of distances. With this purpose we develop a technique to measure accurate photospheric velocities by cross-correlating observed and model spectra. The application of this technique to SN 1999em shows that we can reach an average uncertainty of 11% in velocity from an individual spectrum. Our analysis shows that EPM is quite robust to the effects of dust. In particular, the distances derived from the VI filters change by only 7% when the adopted visual extinction in the host galaxy is varied by 0.45 mag. The superb time sampling of the BVIZJHK light-curves of SN 1999em permits us to study the internal consistency of EPM and test the dilution factors computed from atmosphere models for Type II plateau supernovae. We find that, in the first week since explosion, the EPM distances are up to 50% lower than the average, possibly due the presence of circumstellar material. Over the following 65 days, on the other hand, our tests lend strong credence to the atmosphere models, and confirm previous claims that EPM can produce consistent distances without having to craft specific models to each supernova. This is particularly true for the VI filters which yield distances with an internal consistency of 4%. From the whole set of BVIZJHK photometry, we obtain an average distance of 7.5+/-0.5 Mpc, where the quoted uncertainty (7%) is a conservative estimate of the internal precision of the method obtained from the analysis of the first 70 days of the supernova evolution.Comment: 68 pages, 15 tables, 22 figures, to appear in Ap

    Observation of Collective Excitations of the Dilute 2D Electron System

    Full text link
    We report inelastic light scattering measurements of dispersive spin and charge density excitations in dilute 2D electron systems reaching densities less than 10^{10} cm^{-2}. In the quantum Hall state at nu=2, roton critical points in the spin inter--Landau level mode show a pronounced softening as r_s is increased. Instead of a soft mode instability predicted by Hartree--Fock calculations for r_s ~ 3.3, we find evidence of multiple rotons in the dispersion of the softening spin excitations. Extrapolation of the data indicates the possibility of an instability for r_s >~ 11.Comment: Submitted to Physical Review Letter
    • 

    corecore