6 research outputs found

    A method to account for variation of average compressor inlet pressure during instantaneous distortion analyses

    Get PDF
    A method is presented to calculate the available surge margin as a function of time and incorporate it into an instantaneous distortion analysis. Results show that inlet pressure variations which cause only a small change at the compressor exit can cause a significant variation in the available surge margin

    Experimental results of a deflected thrust V/STOL nozzle research program

    Get PDF
    Four deflected thrust nozzle concepts, designed to operate at the low pressure ratio typical of high bypass-ratio turbofan engines for medium speed (subsonic) V/STOL aircraft, were studied. Maps of overall performance characteristics and exit velocity distributions are used to highlight similarities and differences between the four concepts. Analytically determined secondary flows at the exit of a 90 deg circular pipe bend are compared with the experimental results from the more complex three dimensional geometries. The relative impact of total-pressure losses and secondary flows on nozzle thrust coefficient is addressed by numerical integration of exit velocity measurements

    Formulation of a distortion index based on peak compressor pressure ratios

    Get PDF
    In order to effectively use a compressor face total-pressure distortion index as a measure of inlet-engine compatibility, a correlation of distortion amplitude with stall margin must be developed with minimal scatter. A recent analysis of data recorded in extensive distortion screen tests with the J85-GE-13 turbojet engine has resulted in a correlation based on compressor discharge pressure ratioed to the minimum pressure at the compressor face. Simply by determining compressor stall lines with a single hub radial distortion pattern, a single tip radial pattern, and with undistorted inflow, the overall compressor pressure ratio at stall for even the most complex distortion pattern was found to be predictable

    Effect of screen-induced total-pressure distortion on axial-flow compressor stability

    Get PDF
    An experimental investigation was made to determine the effects of screen-induced total-pressure distortions on two J85-GE-13 turbojet engines. Results were compared to those from a previous program run with a third engine. All compressors were found to be sensitive to a critical angle of circumferential distortion equal to 60 deg., and they all adhered closely to the parallel compressor model. The sensitivity of compressor exit pressure to virtually any type of distortion pattern can be determined by defining stall lines for undistorted, hub radial distorted, and tip radial distorted inflows. The effect of multiple sectors of circumferential distortion is defined

    Experimental Investigation of the Performance of a Mach-2.7 Two-dimensional Bifurcated Duct Inlet with 30 Percent Internal Contraction

    Get PDF
    An experimental study was conducted to determine the performance of a two-dimensional, mixed-compression bifurcated duct inlet system designed for a free-stream Mach number of 2.7. Thirty percent of the supersonic area contraction occurred internally. A movable ramp was used to vary the contraction ratio for off-design operation. Boundary layer bleed regions were located on the cowl, centerbody, and sidewall surfaces. There were also provisions for vortex generators on the cowl and centerbody of the subsonic diffuser. Data were obtained over the Mach number range of 2.0 to 2.8 and at angles of yaw from 0 deg. to the maximum value prior to inlet un-start. The test at Mach 2.8 was to obtain data for an over- speed condition. The Reynolds number varied from 2.5 to 2.3 million/ft for Mach numbers above 2.5. At Mach numbers of 2.5 and lower, the Reynolds number was set at 2.5 million/ft. Bleed patterns, vortex generator patterns, and ramp position were varied, and three inlet configurations were selected for more extensive study. Two of these configurations had self-starting capability. The self-starting configuration that was developed produced 89 percent total pressure recovery at the compressor face station with 6.8 percent total bleed. The compressor face distortion was about 16 percent. Vortex generators were extremely effective in re-distributing flow but were not as effective in reducing distortion. Excellent flow symmetry was achieved between the separated halves of the inlet, and twin-duct instability was not observed. The ramp tip shock was steeper than expected. This caused the cowl lip shock to be reflected from the ramp instead of being cancelled at the shoulder. However, peak recovery at the throat was still obtained with the ramp near the design position
    corecore