26 research outputs found

    Associations with sight-threatening diabetic macular oedema among Indigenous adults with type 2 diabetes attending an Indigenous primary care clinic in remote Australia: a Centre of Research Excellence in Diabetic Retinopathy and Telehealth Eye and Associated Medical Services Network study

    Get PDF
    Objective To identify factors associated with sight-threatening diabetic macular oedema (STDM) in Indigenous Australians attending an Indigenous primary care clinic in remote Australia. Methods and analysis A cross-sectional study design of retinopathy screening data and routinely-collected clinical data among 236 adult Indigenous participants with type 2 diabetes (35.6% men) set in one Indigenous primary care clinic in remote Australia. The primary outcome variable was STDM assessed from retinal images. Results Age (median (range)) was 48 (21–86) years, and known diabetes duration (median (range)) was 8.0 (0–24) years. Prevalence of STDM was high (14.8%) and similar in men and women. STDM was associated with longer diabetes duration (11.7 vs 7.9 years, respectively; p300 mg/mmol) (20.6 vs 5.7%, respectively; p=0.014) and chronic kidney disease (25.7 vs 12.2%, respectively; p=0.035). Some clinical factors differed by sex: anaemia was more prevalent in women. A higher proportion of men were smokers, prescribed statins and had increased albuminuria. Men had higher blood pressure, but lower glycated Haemoglobin A1c (HbA1c) levels and body mass index, than women. Conclusion STDM prevalence was high and similar in men and women. Markers of renal impairment and longer diabetes duration were associated with STDM in this Indigenous primary care population. Embedded teleretinal screening, known diabetes duration-based risk stratification and targeted interventions may lower the prevalence of STDM in remote Indigenous primary care services.Trial registration number Australia and New Zealand Clinical Trials Register: ACTRN 12616000370404.Laima Brazioni, Anthony Keech, Christopher Ryan, Alex Brown, David O'Neal, John Boffa, Sven-Erik Bursell, Alicia Jenkin

    Riboflavin alleviates cardiac failure in Type I diabetic cardiomyopathy

    Get PDF
    Heart failure (HF) is a common and serious comorbidity of diabetes. Oxidative stress has been associated with the pathogenesis of chronic diabetic complications including cardiomyopathy. The ability of antioxidants to inhibit injury has raised the possibility of new therapeutic treatment for diabetic heart diseases. Riboflavin constitutes an essential nutrient for humans and animals and it is an important food additive. Riboflavin, a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), enhances the oxidative folding and subsequent secretion of proteins. The objective of this study was to investigate the cardioprotective effect of riboflavin in diabetic rats. Diabetes was induced in 30 rats by a single injection of streptozotocin (STZ) (70 mg /kg). Riboflavin (20 mg/kg) was orally administered to animals immediately after induction of diabetes and was continued for eight weeks. Rats were examined for diabetic cardiomyopathy by left ventricular (LV) remadynamic function. Myocardial oxidative stress was assessed by measuring the activity of superoxide dismutase (SOD), the level of malondialdehyde (MDA) as well as heme oxygenase-1 (HO-1) protein level. Myocardial connective tissue growth factor (CTGF) level was measured by Western blot in all rats at the end of the study. In the untreated diabetic rats, left ventricular systolic pressure (LVSP) rate of pressure rose (+dp/dt), and rate of pressure decay (−dp/dt) were depressed while left ventricular end-diastolic pressure (LVEDP) was increased, which indicated the reduced left ventricular contractility and slowing of left ventricular relaxation. The level of SOD decreased, CTGF and HO-1 protein expression and MDA content rose. Riboflavin treatment significantly improved left ventricular systolic and diastolic function in diabetic rats, there were persistent increases in significant activation of SOD and the level of HO-1 protein, and a decrease in the level of CTGF. These results suggest that riboflavin treatment ameliorates myocardial function and improves heart oxidant status, whereas raising myocardial HO-1 and decreasing myocardial CTGF levels have beneficial effects on diabetic cardiomyopathy
    corecore