5,294 research outputs found
Numerical Toy-Model Calculation of the Nucleon Spin Autocorrelation Function in a Supernova Core
We develop a simple model for the evolution of a nucleon spin in a hot and
dense nuclear medium. A given nucleon is limited to one-dimensional motion in a
distribution of external, spin-dependent scattering potentials. We calculate
the nucleon spin autocorrelation function numerically for a variety of
potential densities and distributions which are meant to bracket realistic
conditions in a supernova core. For all plausible configurations the width of
the spin-density structure function is found to be less than the temperature.
This is in contrast with a naive perturbative calculation based on the one-pion
exchange potential which overestimates the width and thus suggests a large
suppression of the neutrino opacities by nucleon spin fluctuations. Our results
suggest that it may be justified to neglect the collisional broadening of the
spin-density structure function for the purpose of estimating the neutrino
opacities in the deep inner core of a supernova. On the other hand, we find no
indication that processes such as axion or neutrino pair emission, which depend
on nucleon spin fluctuations, are substantially suppressed beyond the
multiple-scattering effect already discussed in the literature. Aside from
these practical conclusions, our model reveals a number of interesting and
unexpected insights. For example, the spin-relaxation rate saturates with
increasing potential strength only if bound states are not allowed to form by
including a repulsive core. There is no saturation with increasing density of
scattering potentials until localized eigenstates of energy begin to form.Comment: 14 latex pages in two-column format, 15 postscript figures included,
uses revtex.sty and epsf.sty. Submitted to Physical Review
Mu and Tau Neutrino Thermalization and Production in Supernovae: Processes and Timescales
We investigate the rates of production and thermalization of and
neutrinos at temperatures and densities relevant to core-collapse
supernovae and protoneutron stars. Included are contributions from electron
scattering, electron-positron annihilation, nucleon-nucleon bremsstrahlung, and
nucleon scattering. For the scattering processes, in order to incorporate the
full scattering kinematics at arbitrary degeneracy, the structure function
formalism developed by Reddy et al. (1998) and Burrows and Sawyer (1998) is
employed. Furthermore, we derive formulae for the total and differential rates
of nucleon-nucleon bremsstrahlung for arbitrary nucleon degeneracy in
asymmetric matter. We find that electron scattering dominates nucleon
scattering as a thermalization process at low neutrino energies
( MeV), but that nucleon scattering is always faster
than or comparable to electron scattering above MeV. In
addition, for g cm, MeV, and
neutrino energies MeV, nucleon-nucleon bremsstrahlung always
dominates electron-positron annihilation as a production mechanism for
and neutrinos.Comment: 29 pages, LaTeX (RevTeX), 13 figures, submitted to Phys. Rev. C. Also
to be found at anonymous ftp site http://www.astrophysics.arizona.edu; cd to
pub/thompso
Strong Water Absorption in the Dayside Emission Spectrum of the Planet HD 189733b
Recent observations of the extrasolar planet HD 189733b did not reveal the
presence of water in the emission spectrum of the planet. Yet models of such
'Hot Jupiter' planets predict an abundance of atmospheric water vapour.
Validating and constraining these models is crucial for understanding the
physics and chemistry of planetary atmospheres in extreme environments.
Indications of the presence of water in the atmosphere of HD 189733b have
recently been found in transmission spectra, where the planet's atmosphere
selectively absorbs the light of the parent star, and in broadband photometry.
Here we report on the detection of strong water absorption in a high
signal-to-noise, mid-infrared emission spectrum of the planet itself. We find
both a strong downturn in the flux ratio below 10 microns and discrete spectral
features that are characteristic of strong absorption by water vapour. The
differences between these and previous observations are significant and admit
the possibility that predicted planetary-scale dynamical weather structures
might alter the emission spectrum over time. Models that match the observed
spectrum and the broadband photometry suggest that heat distribution from the
dayside to the night side is weak. Reconciling this with the high night side
temperature will require a better understanding of atmospheric circulation or
possible additional energy sources.Comment: 11 pages, 1 figure, published in Natur
The magnetic field effect on the transport and efficiency of group III tris(8-hydroxyquinoline) organic light emitting diodes
Copyright 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 103, 103715 (2008) and may be found at
Many-Body Corrections to Charged-Current Neutrino Absorption Rates in Nuclear Matter
Including nucleon--nucleon correlations due to both Fermi statistics and
nuclear forces, we have developed a general formalism for calculating the
charged--current neutrino--nucleon absorption rates in nuclear matter. We find
that at one half nuclear density many--body effects alone suppress the rates by
a factor of two and that the suppression factors increase to 5 at
g cm. The associated increase in the neutrino--matter
mean--free--paths parallels that found for neutral--current interactions and
opens up interesting possibilities in the context of the delayed supernova
mechanism and protoneutron star cooling.Comment: 11 pages, APS REVTeX format, 1 PostScript figure, uuencoded
compressed, and tarred, submitted to Physical Review Letter
Nuclear Effects on Bremsstrahlung Neutrino Rates of Astrophysical Interest
We calculate in this work the rates for the neutrino pair production by
nucleon-nucleon bremsstrahlung taking into account the full contribution from a
nuclear one-pion-exchange potential. It is shown that if the temperatures are
low enough (), the integration over the nuclear part can be done
for the general case, ranging from the completely degenerate (D) to the
non-degenerate (ND) regime. We find that the inclusion of the full nuclear
contribution enhances the neutrino pair production by and
bremsstrahlung by a factor of about two in both the D and ND limits when
compared with previous calculations. This result may be relevant for the
physical conditions of interest in the semitransparent regions near the
neutrinosphere in type II supernovae, cooling of neutron stars and other
astrophysical situations.Comment: 11 pages, no figures, LaTex file. submitted to PR
Nucleon Spin Fluctuations and the Supernova Emission of Neutrinos and Axions
In the hot and dense medium of a supernova (SN) core, the nucleon spins
fluctuate so fast that the axial-vector neutrino opacity and the axion
emissivity are expected to be significantly modified. Axions with
m_a\alt10^{-2}\,{\rm eV} are not excluded by SN~1987A. A substantial transfer
of energy in neutrino-nucleon () collisions is enabled which may alter
the spectra of SN neutrinos relative to calculations where energy-conserving
collisions had been assumed near the neutrinosphere.Comment: 8 pages. REVTeX. 2 postscript figures, can be included with epsf.
Small modifications of the text, a new "Note Added", and three new
references. To be published in Phys. Rev. Let
Spacelab energetic ion mass spectrometer
Basic design criteria are given for an ion mass spectrometer for use in studying magnetospheric ion populations. The proposed instrument is composed of an electrostatic analyzer followed by a magnetic spectrometer and simultaneously measures the energy per unit and mass per unit charge of the ion species. An electromagnet is used for momentum analysis to extend the operational energy range over a much wider domain than is possible with the permanent magnets used in previous flights. The energetic ion source regions, ion energization mechanisms, field line tracing, coordinated investigations, and orbit considerations are discussed and operations of the momentum analyzer and of the electrostatic energy analyzer are examined
Limits to differences in active and passive charges
We explore consequences of a hypothetical difference between active charges,
which generate electric fields, and passive charges, which respond to them. A
confrontation to experiments using atoms, molecules, or macroscopic matter
yields limits on their fractional difference at levels down to 10^-21, which at
the same time corresponds to an experimental confirmation of Newtons third law.Comment: 6 pages Revtex. To appear in Phys. Rev.
- …