76 research outputs found

    In Vitro and Ex Vivo Hemodynamic Testing of an Innovative Occluder for Paravalvular Leak After Transcather Aortic Valve Implantation

    Get PDF
    This study aims at achieving a proof-of-concept for a novel device designed to occlude the orifices that may form between transcatheter valves and host tissues after TAVI. The device effect on the performance of a SAPIEN XT with a paravalvular gap was assessed into an in vitro and ex vivo pulse duplicator. The in vitro tests were performed complying with the standard international regulations, measuring the trasvalvular pressure and regurgitant volumes with and without the paravalvular gap, and with the occluder correctly positioned into the gap. In the second series of tests, the leakage reduction due to the presence of the occluder was assessed for the same setup, into a beating swine heart. The occluder implantation decreased the regurgitant fraction of about 50% for the in vitro assessment and 75% for the ex vivo test, under rest operating conditions. These results suggest that suitably designed occluders can lead to important benefit in the PVL treatment

    In vitro assessment of pacing as therapy for aortic regurgitation

    Get PDF
    Background and objective Clinical evaluation of pacing therapy in mitigating the aortic insufficiency after transchateter aortic valve implantation often gives contradictory outcomes. This study presents an in vitro investigation aimed at clarifying the effect of pacing on paravalvular leakage. Methods A series of in vitro tests reproducing the heart operating changes clinically obtained by pacing was carried out in a 26 mm Edwards Sapien XT prosthesis with mild paravalvular leakage. The effect of pacing on the regurgitant volumes per cycle and per minute was quantified, and the energy and power consumed by the left ventricle were calculated. Results Results indicate that though pacing results in some reduction in the total regurgitation per cycle, the volume of fluid regurgitating per minute increases substantially, causing overload of left ventricle. Conclusions Our tests indicate no effective haemodynamic benefit from pacing, suggesting a prudential clinical use of this therapy for the treatment of postoperative aortic regurgitation

    An Unsupervised Method to Detect the Left Atrial Appendages and Classify their Morphologies

    Get PDF
    The left atrial appendage (LAA) is the site where the left atrial thrombi are most likely (90%) to develop. Despite the increasing interest that LAA has attracted over the last decade, the methods currently used to classify its morphology are mainly based on cardiologists’ judgment. Given the remarkable improvement of imaging techniques, we propose an unsupervised quantitative method that can overcome the limits of the current classification systems. The resulting classification system is objective and reproducible

    Numerical model of a valvuloplasty balloon: in vitro validation in a rapid‑prototyped phantom

    Get PDF
    Background Patient-specific simulations can provide insight into the mechanics of cardiovascular procedures. Amongst cardiovascular devices, non-compliant balloons are used in several minimally invasive procedures, such as balloon aortic valvuloplasty. Although these balloons are often included in the computer simulations of these procedures, validation of the balloon behaviour is often lacking. We therefore aim to create and validate a computational model of a valvuloplasty balloon. Methods A finite element (FE) model of a valvuloplasty balloon (Edwards 9350BC23) was designed, including balloon geometry and material properties from tensile testing. Young’s Modulus and distensibility of different rapid prototyping (RP) rubber-like materials were evaluated to identify the most suitable compound to reproduce the mechanical properties of calcified arteries in which such balloons are likely to be employed clinically. A cylindrical, simplified implantation site was 3D printed using the selected material and the balloon was inflated inside it. The FE model of balloon inflation alone and its interaction with the cylinder were validated by comparison with experimental Pressure–Volume (P–V) and diameter–Volume (d–V) curves. Results Root mean square errors (RMSE) of pressure and diameter were RMSE P = 161.98 mmHg (3.8 % of the maximum pressure) and RMSE d = 0.12 mm (<0.5 mm, within the acquisition system resolution) for the balloon alone, and RMSE P = 94.87 mmHg (1.9 % of the maximum pressure) and RMSE d = 0.49 mm for the balloon inflated inside the simplified implantation site, respectively. Conclusions This validated computational model could be used to virtually simulate more realistic valvuloplasty interventions

    Numerical model of a valvuloplasty balloon:in vitro validation in a rapid-prototyped phantom

    Get PDF
    BACKGROUND: Patient-specific simulations can provide insight into the mechanics of cardiovascular procedures. Amongst cardiovascular devices, non-compliant balloons are used in several minimally invasive procedures, such as balloon aortic valvuloplasty. Although these balloons are often included in the computer simulations of these procedures, validation of the balloon behaviour is often lacking. We therefore aim to create and validate a computational model of a valvuloplasty balloon. METHODS: A finite element (FE) model of a valvuloplasty balloon (Edwards 9350BC23) was designed, including balloon geometry and material properties from tensile testing. Young’s Modulus and distensibility of different rapid prototyping (RP) rubber-like materials were evaluated to identify the most suitable compound to reproduce the mechanical properties of calcified arteries in which such balloons are likely to be employed clinically. A cylindrical, simplified implantation site was 3D printed using the selected material and the balloon was inflated inside it. The FE model of balloon inflation alone and its interaction with the cylinder were validated by comparison with experimental Pressure–Volume (P–V) and diameter–Volume (d–V) curves. RESULTS: Root mean square errors (RMSE) of pressure and diameter were RMSE(P) = 161.98 mmHg (3.8 % of the maximum pressure) and RMSE(d) = 0.12 mm (<0.5 mm, within the acquisition system resolution) for the balloon alone, and RMSE(P) = 94.87 mmHg (1.9 % of the maximum pressure) and RMSE(d) = 0.49 mm for the balloon inflated inside the simplified implantation site, respectively. CONCLUSIONS: This validated computational model could be used to virtually simulate more realistic valvuloplasty interventions

    The Role of Patient-Specific Morphological Features of the Left Atrial Appendage on the Thromboembolic Risk Under Atrial Fibrillation

    Get PDF
    Background: A large majority of thrombi causing ischemic complications under atrial fibrillation (AF) originate in the left atrial appendage (LAA), an anatomical structure departing from the left atrium, characterized by a large morphological variability between individuals. This work analyses the hemodynamics simulated for different patient-specific models of LAA by means of computational fluid–structure interaction studies, modeling the effect of the changes in contractility and shape resulting from AF. Methods: Three operating conditions were analyzed: sinus rhythm, acute atrial fibrillation, and chronic atrial fibrillation. These were simulated on four patient-specific LAA morphologies, each associated with one of the main morphological variants identified from the common classification: chicken wing, cactus, windsock, and cauliflower. Active contractility of the wall muscle was calibrated on the basis of clinical evaluations of the filling and emptying volumes, and boundary conditions were imposed on the fluid to replicate physiological and pathological atrial pressures, typical of the various operating conditions. Results: The LAA volume and shear strain rates were analyzed over time and space for the different models. Globally, under AF conditions, all models were well aligned in terms of shear strain rate values and predicted levels of risk. Regions of low shear rate, typically associated with a higher risk of a clot, appeared to be promoted by sudden bends and focused at the trabecule and the lobes. These become substantially more pronounced and extended with AF, especially under acute conditions. Conclusion: This work clarifies the role of active and passive contraction on the healthy hemodynamics in the LAA, analyzing the hemodynamic effect of AF that promotes clot formation. The study indicates that local LAA topological features are more directly associated with a thromboembolic risk than the global shape of the appendage, suggesting that more effective classification criteria should be identified

    Low Cost Fabrication of PVA Based Personalized Vascular Phantoms for in Vitro Haemodynamic Studies: Three Applications

    Get PDF
    Vascular phantoms mimicking human vessels are commonly used to perform in vitro haemodynamic studies for a number of bioengineering applications, such as medical device testing, clinical simulators and medical imaging research. Simplified geometries are useful to perform parametric studies, but accurate representations of the complexity of the in vivo system are essential in several applications as personalised features have been found to play a crucial role in the management and treatment of many vascular pathologies. Despite numerous studies employing vascular phantoms produced through different manufacturing techniques, an economically viable technique, able to generate large complex patient-specific vascular anatomies, still needs to be identified. In this work, a manufacturing framework to create personalised and complex phantoms with easily accessible and affordable materials is presented. In particular, 3D printing with polyvinyl alcohol (PVA) is employed to create the mould, and lost core casting is performed to create the physical model. The applicability and flexibility of the proposed fabrication protocol is demonstrated through three phantom case studies - an idealised aortic arch, a patient-specific aortic arch, and a patient-specific aortic dissection model. The phantoms were successfully manufactured in a rigid silicone, a compliant silicone and a rigid epoxy resin, respectively; using two different 3D printers and two casting techniques, without the need of specialist equipment

    Can finite element models of ballooning procedures yield mechanical response of the cardiovascular site to overexpansion?

    Get PDF
    Patient-specific numerical models could aid the decision-making process for percutaneous valve selection; in order to be fully informative, they should include patient-specific data of both anatomy and mechanics of the implantation site. This information can be derived from routine clinical imaging during the cardiac cycle, but data on the implantation site mechanical response to device expansion are not routinely available. We aim to derive the implantation site response to overexpansion by monitoring pressure/dimensional changes during balloon sizing procedures and by applying a reverse engineering approach using a validated computational balloon model. This study presents the proof of concept for such computational framework tested in-vitro. A finite element (FE) model of a PTS-X405 sizing balloon (NuMed, Inc., USA) was created and validated against bench tests carried out on an ad hoc experimental apparatus: first on the balloon alone to replicate free expansion; second on the inflation of the balloon in a rapid prototyped cylinder with material deemed suitable for replicating pulmonary arteries in order to validate balloon/implantation site interaction algorithm. Finally, the balloon was inflated inside a compliant rapid prototyped patient-specific right ventricular outflow tract to test the validity of the approach. The corresponding FE simulation was set up to iteratively infer the mechanical response of the anatomical model. The test in this simplified condition confirmed the feasibility of the proposed approach and the potential for this methodology to provide patient-specific information on mechanical response of the implantation site when overexpanded, ultimately for more realistic computational simulations in patient-specific settings

    Design, Analysis and Testing of a Novel Mitral Valve for Transcatheter Implantation

    Get PDF
    Mitral regurgitation is a common mitral valve dysfunction which may lead to heart failure. Because of the rapid aging of the population, conventional surgical repair and replacement of the pathological valve are often unsuitable for about half of symptomatic patients, who are judged high-risk. Transcatheter valve implantation could represent an effective solution. However, currently available aortic valve devices are inapt for the mitral position. This paper presents the design, development and hydrodynamic assessment of a novel bi-leaflet mitral valve suitable for transcatheter implantation. The device consists of two leaflets and a sealing component made from bovine pericardium, supported by a self-expanding wireframe made from superelastic NiTi alloy. A parametric design procedure based on numerical simulations was implemented to identify design parameters providing acceptable stress levels and maximum coaptation area for the leaflets. The wireframe was designed to host the leaflets and was optimised numerically to minimise the stresses for crimping in an 8 mm sheath for percutaneous delivery. Prototypes were built and their hydrodynamic performances were tested on a cardiac pulse duplicator, in compliance with the ISO5840-3:2013 standard. The numerical results and hydrodynamic tests show the feasibility of the device to be adopted as a transcatheter valve implant for treating mitral regurgitation
    • …
    corecore