545 research outputs found
Disformal transformations on the CMB
In this work we study the role of disformal transformation on cosmological backgrounds and its relation to the speed of sound for tensor modes. A speed different from one for tensor modes can arise in several contexts, such as Galileons theories or massive gravity, nevertheless the speed is very constrained to be one by observations of gravitational wave emission. It has been shown that in inflation a disformal trans- formation allows to set the speed for tensor modes to one without making changes to the curvature power spectrum. Here we show that this invariance does not hold when considering the CMB anisotropy power spectrum. It turns out that the after doing the transformation there is an imprint on the acoustic peaks and the diffusion damping. This has interesting consequences; here we explore quartic galileon theories which allow a modified speed for tensor modes. For these theories the transformation can be used to constraint the parameter space in different regime
Classical Duals, Legendre Transforms and the Vainshtein Mechanism
We show how to generalize the classical duals found by Gabadadze {\it et al}
to a very large class of self-interacting theories. This enables one to adopt a
perturbative description beyond the scale at which classical perturbation
theory breaks down in the original theory. This is particularly relevant if we
want to test modified gravity scenarios that exhibit Vainshtein screening on
solar system scales. We recognise the duals as being related to the Legendre
transform of the original Lagrangian, and present a practical method for
finding the dual in general; our methods can also be applied to
self-interacting theories with a hierarchy of strong coupling scales, and with
multiple fields. We find the classical dual of the full quintic galileon theory
as an example.Comment: 16 page
Conditions for the cosmological viability of the most general scalar-tensor theories and their applications to extended Galileon dark energy models
In the Horndeski's most general scalar-tensor theories with second-order
field equations, we derive the conditions for the avoidance of ghosts and
Laplacian instabilities associated with scalar, tensor, and vector
perturbations in the presence of two perfect fluids on the flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) background. Our general results are
useful for the construction of theoretically consistent models of dark energy.
We apply our formulas to extended Galileon models in which a tracker solution
with an equation of state smaller than -1 is present. We clarify the allowed
parameter space in which the ghosts and Laplacian instabilities are absent and
we numerically confirm that such models are indeed cosmologically viable.Comment: 18 pages, 6 figure
Potential-driven Galileon inflation
For the models of inflation driven by the potential energy of an inflaton
field , the covariant Galileon Lagrangian
generally works to slow down the evolution of the field. On the other hand, if
the Galileon self-interaction is dominant relative to the standard kinetic
term, we show that there is no oscillatory regime of inflaton after the end of
inflation. This is typically accompanied by the appearance of the negative
propagation speed squared of a scalar mode, which leads to the
instability of small-scale perturbations. For chaotic inflation and natural
inflation we clarify the parameter space in which inflaton oscillates
coherently during reheating. Using the WMAP constraints of the scalar spectral
index and the tensor-to-scalar ratio as well, we find that the self coupling
of the potential is constrained to be very
much smaller than 1 and that the symmetry breaking scale of natural
inflation cannot be less than the reduced Planck mass . We also
show that, in the presence of other covariant Galileon Lagrangians, there are
some cases in which inflaton oscillates coherently even for the self coupling
of the order of 0.1, but still the instability associated with
negative is generally present.Comment: 22 pages, 15 figure
Decoding the bispectrum of single-field inflation
Galileon fields arise naturally from the decoupling limit of massive
gravities, and possess special self-interactions which are protected by a
spacetime generalization of Galilean symmetry. We briefly revisit the
inflationary phenomenology of Galileon theories. Working from recent
computations of the fluctuation Lagrangian to cubic order in the most general
model with second-order equations of motion, we show that a distinct shape is
present but with suppressed amplitude. A similar shape has been found in other
higher-derivative models. It may be visible in a theory tuned to suppress the
leading-order shapes, or if the overall bispectrum has large amplitude. Using a
partial-wave expansion of the bispectrum, we suggest a possible origin for the
frequent appearance of this shape. It follows that models with very disparate
microphysics can produce very similar bispectra. We argue that it may be more
profitable to distinguish these models by searching for relations between the
amplitudes of these common shapes. We illustrate this method using the example
of DBI and k-inflation.Comment: v1: 25 pages, including tables, an appendix and references. v2: minor
clarifications about the lowest-order consistency relations; matches version
published in JCA
Generalizing Galileons
The Galileons are a set of terms within four-dimensional effective field
theories, obeying symmetries that can be derived from the dynamics of a
3+1-dimensional flat brane embedded in a 5-dimensional Minkowski Bulk. These
theories have some intriguing properties, including freedom from ghosts and a
non-renormalization theorem that hints at possible applications in both
particle physics and cosmology. In this brief review article, we will summarize
our attempts over the last year to extend the Galileon idea in two important
ways. We will discuss the effective field theory construction arising from
co-dimension greater than one flat branes embedded in a flat background - the
multiGalileons - and we will then describe symmetric covariant versions of the
Galileons, more suitable for general cosmological applications. While all these
Galileons can be thought of as interesting four-dimensional field theories in
their own rights, the work described here may also make it easier to embed them
into string theory, with its multiple extra dimensions and more general
gravitational backgrounds.Comment: 16 pages; invited brief review article for a special issue of
Classical and Quantum Gravity. Submitted to CQ
Cosmological constraints on extended Galileon models
The extended Galileon models possess tracker solutions with de Sitter
attractors along which the dark energy equation of state is constant during the
matter-dominated epoch, i.e. w_DE = -1-s, where s is a positive constant. Even
with this phantom equation of state there are viable parameter spaces in which
the ghosts and Laplacian instabilities are absent. Using the observational data
of the supernovae type Ia, the cosmic microwave background (CMB), and baryon
acoustic oscillations, we place constraints on the tracker solutions at the
background level and find that the parameter s is constrained to be s=0.034
(-0.034,+0.327) (95% CL) in the flat Universe. In order to break the degeneracy
between the models we also study the evolution of cosmological density
perturbations relevant to the large-scale structure (LSS) and the
Integrated-Sachs-Wolfe (ISW) effect in CMB. We show that, depending on the
model parameters, the LSS and the ISW effect is either positively or negatively
correlated. It is then possible to constrain viable parameter spaces further
from the observational data of the ISW-LSS cross-correlation as well as from
the matter power spectrum.Comment: 17 pages, 9 figures, uses RevTeX4-
The δN formula is the dynamical renormalization group
We derive the 'separate universe' method for the inflationary bispectrum,
beginning directly from a field-theory calculation. We work to tree-level in
quantum effects but to all orders in the slow-roll expansion, with masses
accommodated perturbatively. Our method provides a systematic basis to account
for novel sources of time-dependence in inflationary correlation functions, and
has immediate applications. First, we use our result to obtain the correct
matching prescription between the 'quantum' and 'classical' parts of the
separate universe computation. Second, we elaborate on the application of this
method in situations where its validity is not clear. As a by-product of our
calculation we give the leading slow-roll corrections to the three-point
function of field fluctuations on spatially flat hypersurfaces in a canonical,
multiple-field model.Comment: v1: 33 pages, plus appendix and references; 5 figures. v2:
typographical typos fixed, minor changes to the main text and abstract,
reference added; matches version published in JCA
Cosmic acceleration from Abelian symmetry breaking
We discuss a consistent theory for a self-interacting vector field, breaking an Abelian symmetry in such a way to obtain an interesting behavior for its longitudinal polarization. In an appropriate decoupling limit, the dynamics of the longitudinal mode is controlled by Galileon interactions. The full theory away from the decoupling limit does not propagate ghost modes, and can be investigated in regimes where non-linearities become important. When coupled to gravity, this theory provides a candidate for dark energy, since it admits de Sitter cosmological solutions characterized by a technically natural value for the Hubble parameter. We also consider the homogeneous evolution when, besides the vector, additional matter in the form of perfect fluids is included. We find that the vector can have an important role in characterizing the universe expansion
- …