5,150 research outputs found

    Report of Committee on Comparative Law

    Get PDF

    In Memoriam

    Get PDF

    Methodological approaches to determining the marine radiocarbon reservoir effect

    Get PDF
    The marine radiocarbon reservoir effect is an offset in 14C age between contemporaneous organisms from the terrestrial environment and organisms that derive their carbon from the marine environment. Quantification of this effect is of crucial importance for correct calibration of the <sup>14</sup>C ages of marine-influenced samples to the calendrical timescale. This is fundamental to the construction of archaeological and palaeoenvironmental chronologies when such samples are employed in <sup>14</sup>C analysis. Quantitative measurements of temporal variations in regional marine reservoir ages also have the potential to be used as a measure of process changes within Earth surface systems, due to their link with climatic and oceanic changes. The various approaches to quantification of the marine radiocarbon reservoir effect are assessed, focusing particularly on the North Atlantic Ocean. Currently, the global average marine reservoir age of surface waters, R(t), is c. 400 radiocarbon years; however, regional values deviate from this as a function of climate and oceanic circulation systems. These local deviations from R(t) are expressed as +R values. Hence, polar waters exhibit greater reservoir ages (δR = c. +400 to +800 <sup>14</sup>C y) than equatorial waters (δR = c. 0 <sup>14</sup>C y). Observed temporal variations in δR appear to reflect climatic and oceanographic changes. We assess three approaches to quantification of marine reservoir effects using known age samples (from museum collections), tephra isochrones (present onshore/offshore) and paired marine/terrestrial samples (from the same context in, for example, archaeological sites). The strengths and limitations of these approaches are evaluated using examples from the North Atlantic region. It is proposed that, with a suitable protocol, accelerator mass spectrometry (AMS) measurements on paired, short-lived, single entity marine and terrestrial samples from archaeological deposits is the most promising approach to constraining changes over at least the last 5 ky BP

    Lines, Circles, Planes and Spheres

    Full text link
    Let SS be a set of nn points in R3\mathbb{R}^3, no three collinear and not all coplanar. If at most nkn-k are coplanar and nn is sufficiently large, the total number of planes determined is at least 1+k(nk2)(k2)(nk2)1 + k \binom{n-k}{2}-\binom{k}{2}(\frac{n-k}{2}). For similar conditions and sufficiently large nn, (inspired by the work of P. D. T. A. Elliott in \cite{Ell67}) we also show that the number of spheres determined by nn points is at least 1+(n13)t3orchard(n1)1+\binom{n-1}{3}-t_3^{orchard}(n-1), and this bound is best possible under its hypothesis. (By t3orchard(n)t_3^{orchard}(n), we are denoting the maximum number of three-point lines attainable by a configuration of nn points, no four collinear, in the plane, i.e., the classic Orchard Problem.) New lower bounds are also given for both lines and circles.Comment: 37 page

    Visual onset expands subjective time

    Get PDF
    We report a distortion of subjective time perception in which the duration of a first interval is perceived to be longer than the succeeding interval of the same duration. The amount of time expansion depends on the onset type defining the first interval. When a stimulus appears abruptly, its duration is perceived to be longer than when it appears following a stationary array. The difference in the processing time for the stimulus onset and motion onset, measured as reaction times, agrees with the difference in time expansion. Our results suggest that initial transient responses for a visual onset serve as a temporal marker for time estimation, and a systematic change in the processing time for onsets affects perceived time

    Exploring the psychological rewards of a familiar semirural landscape: connecting to local nature through a mindful approach

    Get PDF
    This study analyses a 53,000 word diary of a year engaging with nature through over 200 trips to a semi-rural landscape. Thematic analysis revealed two themes; the transition from observer to nature connectedness and the ways in which the natural environment was experienced once a connection was made. These themes are discussed in relation to theories that seek to explain the positive effect of nature and nature connectedness. The findings are important as they suggest that repeated engagement with local semi-rural countryside can lead to a mindful approach and psychological rewards that do not require travel into the wilderness. The work informs further research into outcomes and processes of nature based interventions such as: trip frequency, duration and diary keeping

    Ambient particulate pollution and the world-wide prevalence of asthma, rhinoconjunctivitis and eczema in children: Phase One of the International Study of Asthma and Allergies in Childhood (ISAAC)

    Get PDF
    Objectives: To investigate the effect of ambient particulate matter on variation in childhood prevalence of asthma, rhinoconjunctivitis and eczema. Methods: Prevalences of asthma, rhinoconjunctivitis and eczema obtained in Phase One of the International Study of Asthma and Allergies in Childhood (ISAAC) were matched with city-level estimates of residential PM10 obtained from a World Bank model. Associations were investigated using binomial regression adjusting for GNP per capita and for clustering within country. For countries with more than one centre, a two stage meta-analysis was carried out. The results were compared with a meta-analysis of published multi-centre studies. Results: Annual concentrations of PM₁₀ at city level were obtained for 105 ISAAC centres in 51 countries. After controlling for GNP per capita, there was a weak negative association between PM₁₀ and various outcomes. For severe wheeze in 13-14-year-olds, the OR for a 10 μg/m³ increase in PM₁₀ was 0.92 (95 CI 0.84 to 1.00). In 24 countries with more than one centre, most summary estimates for within-country associations were weakly positive. For severe wheeze in 13-14-year-olds, the summary OR for a 10 μg/m³ increase in PM₁₀ was 1.01 (0.92 to 1.10). This result was close to a summary OR of 0.99 (0.91 to 1.06) obtained from published multi-centre studies. Conclusions: Modelled estimates of particulate matter at city level are imprecise and incomplete estimates of personal exposure to ambient air pollutants. Nevertheless, our results together with those of previous multi-centre studies, suggest that urban background PM₁₀ has little or no association with the prevalence of childhood asthma, rhinoconjunctivitis or eczema either within or between countries

    On two problems in graph Ramsey theory

    Get PDF
    We study two classical problems in graph Ramsey theory, that of determining the Ramsey number of bounded-degree graphs and that of estimating the induced Ramsey number for a graph with a given number of vertices. The Ramsey number r(H) of a graph H is the least positive integer N such that every two-coloring of the edges of the complete graph KNK_N contains a monochromatic copy of H. A famous result of Chv\'atal, R\"{o}dl, Szemer\'edi and Trotter states that there exists a constant c(\Delta) such that r(H) \leq c(\Delta) n for every graph H with n vertices and maximum degree \Delta. The important open question is to determine the constant c(\Delta). The best results, both due to Graham, R\"{o}dl and Ruci\'nski, state that there are constants c and c' such that 2^{c' \Delta} \leq c(\Delta) \leq 2^{c \Delta \log^2 \Delta}. We improve this upper bound, showing that there is a constant c for which c(\Delta) \leq 2^{c \Delta \log \Delta}. The induced Ramsey number r_{ind}(H) of a graph H is the least positive integer N for which there exists a graph G on N vertices such that every two-coloring of the edges of G contains an induced monochromatic copy of H. Erd\H{o}s conjectured the existence of a constant c such that, for any graph H on n vertices, r_{ind}(H) \leq 2^{c n}. We move a step closer to proving this conjecture, showing that r_{ind} (H) \leq 2^{c n \log n}. This improves upon an earlier result of Kohayakawa, Pr\"{o}mel and R\"{o}dl by a factor of \log n in the exponent.Comment: 18 page
    corecore