5 research outputs found

    Dunajski-Tod equation and reductions of the generalized dispersionless 2DTL hierarchy

    Full text link
    We transfer the scheme for constructing differential reductions recently developed for the Manakov-Santini hierarchy to the case of the two-component generalization of dispersionless 2DTL hierarchy. We demonstrate that the equation arising as a result of the simplest reduction is equivalent (up to a Legendre type transformation) to the Dunajski-Tod equation, locally describing general ASD vacuum metric with conformal symmetry. We consider higher reductions and corresponding reduced hierarchies also.Comment: 14 pages, minor corrections, references adde

    Landscape science: a Russian geographical tradition

    Get PDF
    The Russian geographical tradition of landscape science (landshaftovedenie) is analyzed with particular reference to its initiator, Lev Semenovich Berg (1876-1950). The differences between prevailing Russian and Western concepts of landscape in geography are discussed, and their common origins in German geographical thought in the late nineteenth and early twentieth centuries are delineated. It is argued that the principal differences are accounted for by a number of factors, of which Russia's own distinctive tradition in environmental science deriving from the work of V. V. Dokuchaev (1846-1903), the activities of certain key individuals (such as Berg and C. O. Sauer), and the very different social and political circumstances in different parts of the world appear to be the most significant. At the same time it is noted that neither in Russia nor in the West have geographers succeeded in specifying an agreed and unproblematic understanding of landscape, or more broadly in promoting a common geographical conception of human-environment relationships. In light of such uncertainties, the latter part of the article argues for closer international links between the variant landscape traditions in geography as an important contribution to the quest for sustainability

    On integrability in Grassmann geometries: integrable systems associated with fourfolds in Gr(3,5)

    No full text
    This is the accepted version of the following article: DOUBROV, B. ...et al., 2018. On integrability in Grassmann geometries: integrable systems associated with fourfolds in Gr(3; 5). Proceedings of the London Mathematical Society, 116(5), pp.1269-1300, which has been published in final form at https://doi.org/10.1112/plms.12114.Let Gr(d; n) be the Grassmannian of d-dimensional linear subspaces of an n-dimensional vector space V n. A submanifold X Gr(d; n) gives rise to a differential system ⊂(X) that governs d-dimensional submanifolds of V n whose Gaussian image is contained in X. Systems of the form Σ(X) appear in numerous applications in continuum mechanics, theory of integrable systems, general relativity and differential geometry. They include such wellknown examples as the dispersionless Kadomtsev-Petviashvili equation, the Boyer-Finley equation, Plebansky's heavenly equations, and so on. In this paper we concentrate on the particularly interesting case of this construction where X is a fourfold in Gr(3; 5). Our main goal is to investigate differential-geometric and integrability aspects of the corresponding systems Σ(X). We demonstrate the equivalence of several approaches to dispersionless integrability such as • the method of hydrodynamic reductions, • the method of dispersionless Lax pairs, • integrability on solutions, based on the requirement that the characteristic variety of system Σ(X) defines an Einstein-Weyl geometry on every solution, • integrability on equation, meaning integrability (in twistor-theoretic sense) of the canonical GL(2;R) structure induced on a fourfold X ⊂ Gr(3; 5). All these seemingly different approaches lead to one and the same class of integrable systems Σ(X). We prove that the moduli space of such systems is 6-dimensional. We give a complete description of linearisable systems (the corresponding fourfold X is a linear section of Gr(3; 5)) and linearly degenerate systems (the corresponding fourfold X is the image of a quadratic map P4 99K Gr(3; 5)). The fourfolds corresponding to `generic' integrable systems are not algebraic, and can be parametrised by generalised hypergeometric functions
    corecore