3 research outputs found

    Hospitalisation with Infection, Asthma and Allergy in Kawasaki Disease Patients and Their Families: Genealogical Analysis Using Linked Population Data

    Get PDF
    Background: Kawasaki disease results from an abnormal immunological response to one or more infectious triggers. We hypothesised that heritable differences in immune responses in Kawasaki disease-affected children and their families would result in different epidemiological patterns of other immune-related conditions. We investigated whether hospitalisation for infection and asthma/allergy were different in Kawasaki disease-affected children and their relatives. Methods/Major Findings: We used Western Australian population-linked health data from live births (1970-2006) to compare patterns of hospital admissions in Kawasaki disease cases, age- and sex-matched controls, and their relatives. There were 295 Kawasaki disease cases and 598 age- and sex-matched controls, with 1,636 and 3,780 relatives, respectively. Compared to controls, cases were more likely to have been admitted at least once with an infection (cases, 150 admissions (50.8%) vs controls, 210 admissions (35.1%); odds ratio (OR) = 1.9, 95% confidence interval (CI) 1.4-2.6, P = 7.2Ă—10-6), and with asthma/allergy (cases, 49 admissions (16.6%) vs controls, 42 admissions (7.0%); OR = 2.6, 95% CI 1.7-4.2, P = 1.3Ă—10-5). Cases also had more admissions per person with infection (cases, median 2 admissions, 95% CI 1-5, vs controls, median 1 admission, 95% CI 1-4, P = 1.09Ă—10-5). The risk of admission with infection was higher in the first degree relatives of Kawasaki disease cases compared to those of controls, but the differences were not significant. Conclusion: Differences in the immune phenotype of children who develop Kawasaki disease may influence the severity of other immune-related conditions, with some similar patterns observed in relatives. These data suggest the influence of shared heritable factors in these families

    Neonatal immunology: responses to pathogenic microorganisms and epigenetics reveal an “immunodiverse” developmental state

    No full text
    Neonatal animals have heightened susceptibility to infectious agents and are at increased risk for the development of allergic diseases, such as asthma. Experimental studies using animal models have been quite useful for beginning to identify the cellular and molecular mechanisms underlying these sensitivities. In particular, results from murine neonatal models indicate that developmental regulation of multiple immune cell types contributes to the typically poor responses of neonates to pathogenic microorganisms. Surprisingly, however, animal studies have also revealed that responses at mucosal surfaces in early life may be protective against primary or secondary disease. Our understanding of the molecular events underlying these processes is less well developed. Emerging evidence indicates that the functional properties of neonatal immune cells and the subsequent maturation of the immune system in ontogeny may be regulated by epigenetic phenomena. Here, we review recent findings from our group and others describing cellular responses to infection and developmentally regulated epigenetic processes in the newborn
    corecore