756 research outputs found

    Embodying music theory: A performative approach

    Get PDF
    peer-reviewedBackground in embodied cognitive sciences and somatics applied to music education/music theory. Western classical music theory is often taught in a way that is disembodied from the performance of musical practices. This research aims to address this mind-body disconnect by utilising embodied cognition (Dewey, 1916, 1934, 1997, 2011; Schusterman, 2008; Bresler, 2013; Cox, 2016; Vass, E., & Deszpot, 2017) and somatic practice (Adler, 2002; Davis, 2007; Hartley, 1989; Hanlon-Johnson, 1995) to investigate and develop a unified and bodily approach to teaching and learning that is called a performative music theory approach. The experience of this performative approach towards teaching and learning Western classical music theory uses arts practice methods to capture the embodied understanding and perspective from the perspective of teacher and students during a performance based assignment. Reflective and reflexive practice (Schön, 1984; Howard, 2003; Westerlund, 2012; McLeod, 2017; Kolb, 1984; Smith, 2001) used by both the teacher and students provides insight into the embodied experiences and implications for teaching and learning during this performative music theory approach. This paper includes of one performance that was part of this arts practice PhD research project that demonstrates the performative music theory approach

    Investigation of an unusual metal-RNA cluster in the P5abc subdomain of the group I intron

    Get PDF
    This dissertation focuses on the spectroscopic and thermodynamic characterization of the unusual metal-RNA cluster found in the P5abc subdomain of the Tetrahymena group I intron. The P5abc subdomain is a part of the P4-P6 domain found in the Tetrahymena thermophila group I intron selfsplicing RNA. From both X-ray crystal structures of the P4-P6 domain, a remarkable cluster of Mg2+ or Mn2+ ions was found in the P5abc subdomain (Cate et al. 1996; Juneau et al. 2001). It is believed that the metal ion core in the P5abc subdomain stabilizes the active conformation of the RNA (Cate et al. 1996). An understanding of the role of these metal ions in facilitating the correct structure of the P5abc subdomain provides insight into how metal ions help overcome the folding barriers of complex RNA structures. Under solution conditions, the properties of this uncommon metal ion core and its influence on the truncated P5abc subdomain structure have been investigated. Both EPR spectroscopy and thermal denaturation experiments have been employed to search for a spectroscopic signature of metal ion core formation and also determine the thermodynamic contribution of the metal ion core on the stability of the folded P5abc structure. A spectroscopic signature of metal ion core formation was assigned for the P5abc subdomain by EPR microwave power saturation studies. Power saturation studies of the P5abc subdomain, P4-P6 domain and corresponding mutants reveal that the addition of 5 equivalents of Mn2+ are required for the wild type P5abc subdomain to form the metal ion core under solution conditions in 0.1 M NaCl. Results from both domain and subdomain microwave power saturation studies suggest that this technique can be applied for detecting clustering of Mn2+ ions in other RNA structures. The thermodynamic consequence of this metal ion core was probed by thermal denaturation techniques including UV-Vis spectroscopy and differential scanning calorimetry (DSC). DSC experiments were utilized to directly determine the thermodynamic contribution of the metal ion core. This value was determined to be an average of ∆∆G of -5.3 kcal/mol and is consistent with ∆∆G values obtained for other RNA tertiary structures

    The Source Newsletter

    Get PDF

    April 2013

    Get PDF

    Investigation of an unusual metal-RNA cluster in the P5abc subdomain of the group I intron

    Get PDF
    This dissertation focuses on the spectroscopic and thermodynamic characterization of the unusual metal-RNA cluster found in the P5abc subdomain of the Tetrahymena group I intron. The P5abc subdomain is a part of the P4-P6 domain found in the Tetrahymena thermophila group I intron selfsplicing RNA. From both X-ray crystal structures of the P4-P6 domain, a remarkable cluster of Mg2+ or Mn2+ ions was found in the P5abc subdomain (Cate et al. 1996; Juneau et al. 2001). It is believed that the metal ion core in the P5abc subdomain stabilizes the active conformation of the RNA (Cate et al. 1996). An understanding of the role of these metal ions in facilitating the correct structure of the P5abc subdomain provides insight into how metal ions help overcome the folding barriers of complex RNA structures. Under solution conditions, the properties of this uncommon metal ion core and its influence on the truncated P5abc subdomain structure have been investigated. Both EPR spectroscopy and thermal denaturation experiments have been employed to search for a spectroscopic signature of metal ion core formation and also determine the thermodynamic contribution of the metal ion core on the stability of the folded P5abc structure. A spectroscopic signature of metal ion core formation was assigned for the P5abc subdomain by EPR microwave power saturation studies. Power saturation studies of the P5abc subdomain, P4-P6 domain and corresponding mutants reveal that the addition of 5 equivalents of Mn2+ are required for the wild type P5abc subdomain to form the metal ion core under solution conditions in 0.1 M NaCl. Results from both domain and subdomain microwave power saturation studies suggest that this technique can be applied for detecting clustering of Mn2+ ions in other RNA structures. The thermodynamic consequence of this metal ion core was probed by thermal denaturation techniques including UV-Vis spectroscopy and differential scanning calorimetry (DSC). DSC experiments were utilized to directly determine the thermodynamic contribution of the metal ion core. This value was determined to be an average of ∆∆G of -5.3 kcal/mol and is consistent with ∆∆G values obtained for other RNA tertiary structures

    Effects of caffeine supplementation on performance in ball games

    Get PDF
    Although a large body of evidence exists documenting the ergogenic properties of caffeine, most studies have focused on endurance performance. However, findings from endurance sports cannot be generalized to performance in ball games where, apart from having a high level of endurance, successful athletic performances require a combination of physiological, technical and cognitive capabilities. The purpose of this review was to critically evaluate studies that have examined the effect of a single dose of caffeine in isolation on one or more of the following performance measures: total distance, sprint performance, agility, vertical jump performance and accuracy in ball games. Searches of three major databases resulted in 19 studies (invasion games: 13; net-barrier games: 6) that evaluated the acute effects of caffeine on human participants, provided the caffeine dose administered, and included a ball games specific task or simulated match. Improvements in sprint performance were observed in 8 of 10 studies (80%), and vertical jump in 7 of 8 studies (88%). Equivocal results were reported for distance covered, agility and accuracy. Minor side effects were reported in 4 of 19 studies reviewed. Pre-exercise caffeine ingestion between 3.0 and 6.0 mg/kg of body mass appears to be a safe ergogenic aid for athletes in ball games. However, the efficacy of caffeine varies depending on various factors, including, but not limited to, the nature of the game, physical status and caffeine habituation. More research is warranted to clarify the effects of caffeine on performance measures unique to ball games, such as agility and accuracy. It is essential that athletes, coaches and practitioners evaluate the risk-benefit ratio of caffeine ingestion strategies on an individual case-by-case basis
    • …
    corecore