854 research outputs found

    Analyze This-Usage and Your Collection

    Get PDF

    Cloning and Sequencing of a Cellobiohydrolase Gene from Trichoderma harzianum FP108

    Get PDF
    A cbh1 cellobiohydrolase gene was cloned and sequenced from the fungus Trichoderma harzianum FP108. The cloning was performed by PCR amplification of T. harzianum genomic DNA, using PCR primers whose sequence was based on the cbh1 gene from Trichoderma reesei. The 3\u27 end of the gene was isolated by inverse PCR; attempts to clone regions upstream of the 5\u27 end of the gene were unsuccessful. Sequence comparisons suggest that this gene is closely related to cbb1 genes from other Trichoderma species. In particular, all catalytically important amino acids in the protein sequence deduced from the T harzianum cbb1 gene are conserved between species

    Use of DES Modeling for Determining Launch Availability for SLS

    Get PDF
    The National Aeronautics and Space Administration (NASA) is developing new capabilities for human and scientific exploration beyond Earth's orbit. This effort includes the Space Shuttle derived Space Launch System (SLS), the Multi-Purpose Crew Vehicle (MPCV) "Orion", and the Ground Systems Development and Operations (GSDO). There are several requirements and Technical Performance Measures (TPMs) that have been levied by the Exploration Systems Development (ESD) upon the SLS, MPCV, and GSDO Programs including an integrated Launch Availability (LA) TPM. The LA TPM is used to drive into the SLS, Orion and GSDO designs a high confidence of successfully launching exploration missions that have narrow Earth departure windows. The LA TPM takes into consideration the reliability of the overall system (SLS, Orion and GSDO), natural environments, likelihood of a failure, and the time required to recover from an anomaly. A challenge with the LA TPM is the interrelationships between SLS, Orion, GSDO and the natural environments during launch countdown and launch delays that makes it impossible to develop an analytical solution for calculating the integrated launch probability. This paper provides an overview of how Discrete Event Simulation (DES) modeling was used to develop the LA TPM, how it was allocated down to the individual programs, and how the LA analysis is being used to inform and drive the SLS, Orion, and GSDO designs to ensure adequate launch availability for future human exploration

    Space Environments and Spacecraft Effects Organization Concept

    Get PDF
    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope of the TWGs and their relationship to the functional areas, and discuss an organizational structure for this space environments and spacecraft effects organization

    An Overview of the Space Environments and Spacecraft Effects Organization Concept

    Get PDF
    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore our Earth, and the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge on the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments fields that will serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environment and spacecraft effects (SESE) organization. This SESE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems, and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system, and system-level response to the space environment and include the selection and testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope and purpose of the space environments and spacecraft effects organization and describe the TWG's and their relationship to the functional areas
    • …
    corecore