5,213 research outputs found
Precision measurement with an optical Josephson junction
We study a new type of Josephson device, the so-called "optical Josephson
junction" as proposed in Phys. Rev. Lett. {\bf 95}, 170402 (2005). Two
condensates are optically coupled through a waveguide by a pair of Bragg beams.
This optical Josephson junction is analogous to the usual Josephson junction of
two condensates weakly coupled via tunneling. We discuss the use of this
optical Josephson junction, for making precision measurements.Comment: 6 pages, 1 figur
EBSD mapping of herringbone domain structures in tetragonal piezoelectrics
Herringbone domain structures have been mapped using electron backscatter diffraction (EBSD) in two tetragonal piezoelectrics, lead zirconate titanate, [Pb(Zr,Ti)O<sub>3</sub>] and bismuth ferrite – lead titanate, [(PbTi)<sub>0.5</sub>(BiFe)<sub>0.5</sub>O<sub>3</sub>]. Analysis of the domain misorientations across the band junctions shows that the structures correspond very well to crystallographic models. High resolution mapping with a 20 nm step size allowed the crystal rotation across one of these band junctions in lead zirconate titanate to be studied in detail and allowed an improved estimation of the peak strain at the junction, of 0.56 GPa. The significance of this for crack nucleation and propagation in such materials is discussed
Hydrogen and fluorine in the surfaces of lunar samples
The resonant nuclear reaction F-19 (p, alpha gamma)0-16 has been used to perform depth sensitive analyses for both fluorine and hydrogen in lunar samples. The resonance at 0.83 MeV (center-of-mass) in this reaction has been applied to the measurement of the distribution of trapped solar protons in lunar samples to depths of about 1/2 micrometer. These results are interpreted in terms of terrestrial H2O surface contamination and a redistribution of the implanted solar H which has been influenced by heavy radiation damage in the surface region. Results are also presented for an experiment to test the penetration of H2O into laboratory glass samples which have been irradiated with 0-16 to simulate the radiation damaged surfaces of lunar glasses. Fluorine determinations have been performed in a 1 pm surface layer on lunar samples using the same F-19 alpha gamma)0-16 resonance. The data are discussed from the standpoint of lunar fluorine and Teflon contamination
Entanglement between atomic condensates in an optical lattice: effects of interaction range
We study the area-dependent entropy and two-site entanglement for two state
Bose-Einstein condensates in a 2D optical lattice. We consider the case where
the array of two component condensates behave like an ensemble of spin-half
particles with the interaction to its nearest neighbors and next nearest
neighbors. We show how the Hamiltonian of their Bose-Einstein condensate
lattice with nearest-neighbor and next-nearest-neighbor interactions can be
mapped into a harmonic lattice. We use this to determine the entropy and
entanglement content of the lattice.Comment: 5 pages, 3 figures, title change
Method comparisons, influence of the number, distribution and range of samples on performance claims
- …