5,916 research outputs found

    Study of small turbofan engines applicable to general-aviation aircraft

    Get PDF
    The applicability of small turbofan engines to general aviation aircraft is discussed. The engine and engine/airplane performance, weight, size, and cost interrelationships are examined. The effects of specific engine noise constraints are evaluated. The factors inhibiting the use of turbofan engines in general aviation aircraft are identified

    Sesame-Style Decomposition of KS-DFT Molecular Dynamics for Direct Interrogation of Nuclear Models

    Full text link
    A common paradigm used in the construction of equations of state is to decompose the thermodynamics into a superposition of three terms: a static-lattice cold curve, a contribution from the thermal motion of the nuclei, and a contribution from the thermal excitation of the electrons. While statistical mechanical models for crystals provide tractable framework for the nuclear contribution in the solid phase, much less is understood about the nuclear contribution above the melt temperature (Cv(nuc)3RC_v^{(\text{nuc})}\approx 3R) and how it should transition to the high-temperature limit (Cv(nuc)32RC_v^{(\text{nuc})} \sim \frac{3}{2}R). In this work, we describe an algorithm for extracting both the thermal nuclear and thermal electronic contributions from quantum molecular dynamics (QMD). We then use the VASP QMD package to probe thermal nuclear behavior of liquid aluminum at normal density to compare the results to semi-empirical models -- the Johnson generic model, the Chisolm high-temperature liquid model, and the CRIS model.Comment: 6 pages, 4 figures, APS Shock Compression of Condensed Matter Conference Proceedings 201

    Characterisation of the dynamical quantum state of a zero temperature Bose-Einstein condensate

    Get PDF
    We describe the quantum state of a Bose-Einstein condensate at zero temperature. By evaluating the Q-function we show that the ground state of Bose-Einstein condensate under the Hartree approximation is squeezed. We find that multimode Schroedinger cat states are generated as the condensate evolves in a ballistic expansion.Comment: 13 pages, 6 figure

    Stability of spherically symmetric solutions in modified theories of gravity

    Full text link
    In recent years, a number of alternative theories of gravity have been proposed as possible resolutions of certain cosmological problems or as toy models for possible but heretofore unobserved effects. However, the implications of such theories for the stability of structures such as stars have not been fully investigated. We use our "generalized variational principle", described in a previous work, to analyze the stability of static spherically symmetric solutions to spherically symmetric perturbations in three such alternative theories: Carroll et al.'s f(R) gravity, Jacobson & Mattingly's "Einstein-aether theory", and Bekenstein's TeVeS. We find that in the presence of matter, f(R) gravity is highly unstable; that the stability conditions for spherically symmetric curved vacuum Einstein-aether backgrounds are the same as those for linearized stability about flat spacetime, with one exceptional case; and that the "kinetic terms" of vacuum TeVeS are indefinite in a curved background, leading to an instability.Comment: ReVTex; 20 pages, 3 figures. v2: references added, submitted to PRD; v3: expanded discussion of TeVeS; v4: minor typos corrected (version to appear in PRD

    A general variational principle for spherically symmetric perturbations in diffeomorphism covariant theories

    Get PDF
    We present a general method for the analysis of the stability of static, spherically symmetric solutions to spherically symmetric perturbations in an arbitrary diffeomorphism covariant Lagrangian field theory. Our method involves fixing the gauge and solving the linearized gravitational field equations to eliminate the metric perturbation variable in terms of the matter variables. In a wide class of cases--which include f(R) gravity, the Einstein-aether theory of Jacobson and Mattingly, and Bekenstein's TeVeS theory--the remaining perturbation equations for the matter fields are second order in time. We show how the symplectic current arising from the original Lagrangian gives rise to a symmetric bilinear form on the variables of the reduced theory. If this bilinear form is positive definite, it provides an inner product that puts the equations of motion of the reduced theory into a self-adjoint form. A variational principle can then be written down immediately, from which stability can be tested readily. We illustrate our method in the case of Einstein's equation with perfect fluid matter, thereby re-deriving, in a systematic manner, Chandrasekhar's variational principle for radial oscillations of spherically symmetric stars. In a subsequent paper, we will apply our analysis to f(R) gravity, the Einstein-aether theory, and Bekenstein's TeVeS theory.Comment: 13 pages; submitted to Phys. Rev. D. v2: changed formatting, added conclusion, corrected sign convention

    Revisiting critical literacy in the digital age

    Get PDF
    In an age of environmental crisis, financial instability, widespread migration, and political extremism, the case for critical literacy is pressing. Navigating criticality in the digital age, however, is challenging, not least because digital media, digital devices, and digital architectures are implicated in broader social, cultural, commercial, and political activity. Critical literacy in this context needs to do more than focus on the significance of texts within networks of humans. The authors developed a model designed to support a relational approach to critical literacy, drawing on a sociomaterial perspective to consider how broader social‐material networks help generate meanings that may amplify, undermine, or contradict the activities of individuals and groups. The authors end with questions that provide a starting point for broadening the scope of critical literacy in education to reflect on relationships among people, texts, and materials across time and spaces

    Local continuity laws on the phase space of Einstein equations with sources

    Full text link
    Local continuity equations involving background fields and variantions of the fields, are obtained for a restricted class of solutions of the Einstein-Maxwell and Einstein-Weyl theories using a new approach based on the concept of the adjoint of a differential operator. Such covariant conservation laws are generated by means of decoupled equations and their adjoints in such a way that the corresponding covariantly conserved currents possess some gauge-invariant properties and are expressed in terms of Debye potentials. These continuity laws lead to both a covariant description of bilinear forms on the phase space and the existence of conserved quantities. Differences and similarities with other approaches and extensions of our results are discussed.Comment: LaTeX, 13 page
    corecore