3,455 research outputs found

    Geometrical room geometry estimation from room impulse responses

    Full text link
    © 2016 IEEE. Room geometry estimation from corresponding Room Impulse Responses (RIRs) has attracted much attention in recent years, and a key challenge is to find the first order image source locations from the RIRs under different environments. Unlike the existing approaches which require a priori knowledge of the room or require some ideal conditions, this paper proposes an intuitive geometrical method based on the acoustical image source model. The proposed approach does not need any a priori knowledge of the room, only the RIRs from one arbitrary source location to five arbitrary receiving locations. The first order image sources of the walls in a room are identified first, then the room geometry is estimated based on the wall locations using a geometrical approach. Simulations with 2D and 3D convex polyhedral rooms demonstrate the feasibility and the precision of the proposed approach is discussed

    Estimation of the frequency boundaries of the inertial range for wind noise spectra in anechoic wind tunnels

    Full text link
    Wind noise generated by the intrinsic turbulence in the flow can affect outdoor noise measurements. Various attempts have been made to investigate the wind noise generation mechanism. Wind noise spectra in anechoic wind tunnels can be divided into three frequency regions: In the low frequency region known as the energy-containing range, the wind noise spectrum does not change significantly with frequency. In contrast, in the middle frequency region (or inertial range) the decay rate of the wind noise spectrum curve follows the -7/3 power law, but in the high frequency region (or dissipation range) the decay rate of the wind noise spectrum curve is faster than the -7/3 power law. The boundaries of the -7/3 power law frequency range depend on the Reynolds number; however, no exact value is known according to current literature. This paper proposes a method for predicting the boundary values based on the energy cascade theory. Large eddy simulations of free jet were performed to validate the proposed method and the results were found to be in reasonable agreement with existing experiment measurements obtained in an anechoic wind tunnel. Additional simulations were also conducted with different inflow entrance sizes to further verify the predictions from the proposed method

    Wind noise spectra in small Reynolds number turbulent flows

    Full text link
    © 2017 Acoustical Society of America. Wind noise spectra caused by wind from fans in indoor environments have been found to be different from those measured in outdoor atmospheric conditions. Although many models have been developed to predict outdoor wind noise spectra under the assumption of large Reynolds number [Zhao, Cheng, Qiu, Burnett, and Liu (2016). J. Acoust. Soc. Am. 140, 4178-4182, and the references therein], they cannot be applied directly to the indoor situations because the Reynolds number of wind from fans in indoor environments is usually much smaller than that experienced in atmospheric turbulence. This paper proposes a pressure structure function model that combines the energy-containing and dissipation ranges so that the pressure spectrum for small Reynolds number turbulent flows can be calculated. The proposed pressure structure function model is validated with the experimental results in the literature, and then the obtained pressure spectrum is verified with the numerical simulation and experiment results. It is demonstrated that the pressure spectrum obtained from the proposed pressure structure function model can be utilized to estimate wind noise spectra caused by turbulent flows with small Reynolds numbers

    Pressure spectra in turbulent flows in the inertial and the dissipation ranges

    Full text link
    © 2016 Acoustical Society of America. Based on existing studies that provide the pressure spectra in turbulent flows from the asymptotic pressure structure function in the inertial range, this paper extends the pressure spectrum to the dissipation range by proposing a pressure structure function model that incorporates both the inertial and dissipation ranges. Existing experiment results were used to validate the proposed pressure structure function model first, and then the obtained pressure spectrum was compared with the simulation and measurement data in the literature and the wind-induced noise measured outdoors. All comparisons demonstrate that the pressure spectrum obtained from the proposed pressure structure function model can be used to estimate the pressure spectra in both the inertial and dissipation ranges in turbulent flows with a sufficiently large Reynolds number

    The Knudsen temperature jump and the Navier-Stokes hydrodynamics of granular gases driven by thermal walls

    Full text link
    Thermal wall is a convenient idealization of a rapidly vibrating plate used for vibrofluidization of granular materials. The objective of this work is to incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes hydrodynamic modeling of dilute granular gases of monodisperse particles that collide nearly elastically. The Knudsen temperature jump manifests itself as an additional term, proportional to the temperature gradient, in the boundary condition for the temperature. Up to a numerical pre-factor of order unity, this term is known from kinetic theory of elastic gases. We determine the previously unknown numerical pre-factor by measuring, in a series of molecular dynamics (MD) simulations, steady-state temperature profiles of a gas of elastically colliding hard disks, confined between two thermal walls kept at different temperatures, and comparing the results with the predictions of a hydrodynamic calculation employing the modified boundary condition. The modified boundary condition is then applied, without any adjustable parameters, to a hydrodynamic calculation of the temperature profile of a gas of inelastic hard disks driven by a thermal wall. We find the hydrodynamic prediction to be in very good agreement with MD simulations of the same system. The results of this work pave the way to a more accurate hydrodynamic modeling of driven granular gases.Comment: 7 pages, 3 figure

    On the wind noise reduction mechanism of porous microphone windscreens

    Full text link
    © 2017 Acoustical Society of America. This paper investigates the wind noise reduction mechanism of porous microphone windscreens. The pressure fluctuations inside the porous windscreens with various viscous and inertial coefficients are studied with numerical simulations. The viscous and inertial coefficients represent the viscous forces resulting from the fluid-solid interaction along the surface of the pores and the inertial forces imposed on the fluid flow by the solid structure of the porous medium, respectively. Simulation results indicate that the wind noise reduction first increases and then decreases with both viscous and inertial coefficients after reaching a maximum. Experimental results conducted on five porous microphone windscreens with porosity from 20 to 60 pores per inch (PPI) show that the 40 PPI windscreen has the highest wind noise reduction performance, and this supports the simulation results. The existence of the optimal values for the viscous and inertial coefficients is explained qualitatively and it is shown that the design of the porous microphone windscreens should take into account both the turbulence suppression inside and the wake generation behind the windscreen to achieve optimal performance

    Seed Treatment for Corn Diseases

    Get PDF
    In Iowa three destructive corn diseases attack the seed, namely, Dfplc·dfa dry rot, Baslsporlum dry rot and Gibberella dry rot. These dry rots are best known on the ear, but also may attack any part of the plant, lncluding the seed and seedling. The Injury to the seed and to the subsequent yield has been measured during the last six years in 25 counties and found to average 5 bushels per acre. These dry rot organisms llve over on the old stubble In the soil and on the seed and attack the next season\u27s crop

    Mitigating wind noise with a spherical microphone array

    Full text link
    © 2018 Acoustical Society of America. This paper utilizes a rigid spherical microphone array to reduce wind noise. In the experiments conducted, a loudspeaker is used to reproduce the desired sound signal and an axial fan is employed to generate wind noise in an anechoic chamber. The sound signal and wind noise are measured separately with the spherical microphone array and analyzed in the spherical harmonic domain. The wind noise is found to be irregularly distributed in the spherical harmonic domain, distinct from the sound signal which is concentrated in the first few spherical harmonic modes. This difference is utilized to reduce wind noise without degrading the desired sound pressure level (SPL) by use of a low pass filter method in the spherical harmonic domain. Experimental results with both single-tonal and multi-tonal sound signals demonstrate that the proposed method can reduce wind noise by more than 10 dB in the frequency range below 500 Hz. The SPL of the desired sound signal can be extracted from wind noise with an error within 1.0 dB, even when the sound level is 8 dB lower than wind noise

    Decisive Search for a Diquark-Antidiquark Meson with Hidden Strangeness

    Full text link
    Diquark-antidiquark states are expected to exist as a natural complement of mesons and baryons. Although they were predicted long ago, and some candidates were found experimentally, none has, as yet, been reliably identified. We suggest that the search for the so-called C(1480)C(1480)-meson in reactions such as photoproduction γNϕπN\gamma N\rightarrow\phi\pi N and KNϕπΛK N \rightarrow \phi \pi \Lambda should provide a decisive way to settle this issue. Estimates of the cross sections are given using present experimental information on the C-meson and assuming its diquark-antidiquark structure. Sizable cross sections are predicted (of the order of 0.1 μ\mub for photoproduction and of the order of 0.1 mb for KNKN at the maximum with an insignificant background). Failure to find this kind of signal would imply that the C-meson is {\it not} a diquark-antidiquark state.Comment: 9 pages in LATex + 6 figs. (available from authers upon request), IUHET-269/9
    corecore