1,532 research outputs found
Investigation of installation effects of single-engine convergent-divergent nozzles
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine installation effects on single-engine convergent-divergent nozzles applicable to reduced-power supersonic cruise aircraft. Tests were conducted at Mach numbers from 0.50 to 1.20, at angles of attack from -3 degrees to 9 degrees, and at nozzle pressure ratios from 1.0 (jet off) to 8.0. The effects of empennage arrangement, nozzle length, a cusp fairing, and afterbody closure on total aft-end drag coefficient and component drag coefficients were investigated. Basic lift- and drag-coefficient data and external static-pressure distributions on the nozzle and afterbody are presented and discussed
Pm receiver rf test console, appendix f final rep
Technical description of phase-modulation receiver developed in radio-frequency console progra
Translational energy dependence of O+(4S) + N2 → NO+ + N from thermal energies to 30 eV c.m.
Journal ArticleGuided ion beam mass spectrometry is used to examine the kinetic energy dependence of the reaction of ground state atomic oxygen ion with molecular nitrogen. An 0 + (4S) source which produces less than 0.06% excited states is described. Cross sections for the NO+ + N product channel decrease with increasing energy below 0.25 eV but increase with energy at higher energies
Effects of tail span and empennage arrangement on drag of a typical single-engine fighter aft end
An investigation was conducted in the Langley 16 foot Transonic Tunnel to determine the effects of tail span and empennage arrangement on drag of a single engine nozzle/afterbody model. Tests were conducted at Mach numbers from 0.50 to 1.20, nozzle pressures frm 1.0 (jet off) to 8.0, and angles of attack from -3 to 9 deg, depending upon Mach numbers. Three empennage arrangements (aft, staggered, and forward) were investigated with several different tail spans. The results of the investigation indicate that tail span and position have a significant effect on the drag at transonic speeds. Unfavorable tail interference was largely due to the outer portion of the tail surfaces. The inner portion near the nozzle and afterbody did little to increase drag other than surface skin friction. Tail positions forward of the nozzle generally had lower tail interference
The Carnegie Astrometric Planet Search Program
We are undertaking an astrometric search for gas giant planets and brown
dwarfs orbiting nearby low mass dwarf stars with the 2.5-m du Pont telescope at
the Las Campanas Observatory in Chile. We have built two specialized
astrometric cameras, the Carnegie Astrometric Planet Search Cameras (CAPSCam-S
and CAPSCam-N), using two Teledyne Hawaii-2RG HyViSI arrays, with the cameras'
design having been optimized for high accuracy astrometry of M dwarf stars. We
describe two independent CAPSCam data reduction approaches and present a
detailed analysis of the observations to date of one of our target stars, NLTT
48256. Observations of NLTT 48256 taken since July 2007 with CAPSCam-S imply
that astrometric accuracies of around 0.3 milliarcsec per hour are achievable,
sufficient to detect a Jupiter-mass companion orbiting 1 AU from a late M dwarf
10 pc away with a signal-to-noise ratio of about 4. We plan to follow about 100
nearby (primarily within about 10 pc) low mass stars, principally late M, L,
and T dwarfs, for 10 years or more, in order to detect very low mass companions
with orbital periods long enough to permit the existence of habitable,
Earth-like planets on shorter-period orbits. These stars are generally too
faint and red to be included in ground-based Doppler planet surveys, which are
often optimized for FGK dwarfs. The smaller masses of late M dwarfs also yield
correspondingly larger astrometric signals for a given mass planet. Our search
will help to determine whether gas giant planets form primarily by core
accretion or by disk instability around late M dwarf stars.Comment: 48 pages, 9 figures. in press, Publ. Astron. Soc. Pacifi
The Abundances Of Neutron-Capture Species In The Very Metal-Poor Globular Cluster M15: A Uniform Analysis Of Red Giant Branch And Red Horizontal Branch Stars
The globular cluster M15 is unique in its display of star-to-star variations in the neutron-capture elements. Comprehensive abundance surveys have been previously conducted for handfuls of M15 red giant branch (RGB) and red horizontal branch (RHB) stars. No attempt has been made to perform a single, self-consistent analysis of these stars, which exhibit a wide range in atmospheric parameters. In the current effort, a new comparative abundance derivation is presented for three RGB and six RHB members of the cluster. The analysis employs an updated version of the line transfer code MOOG, which now appropriately treats coherent, isotropic scattering. The apparent discrepancy in the previously reported values for the metallicity of M15 RGB and RHB stars is addressed and a resolute disparity of Delta(RHB-RGB) approximate to 0.1 dex in the iron abundance was found. The anti-correlative behavior of the light neutron-capture elements (Sr, Y, Zr) is clearly demonstrated with both Ba and Eu, standard markers of the s- and r-process, respectively. No conclusive detection of Pb was made in the RGB targets. Consequently for the M15 cluster, this suggests that the main component of the s-process has made a negligible contribution to those elements normally dominated by this process in solar system material. Additionally for the M15 sample, a large Eu abundance spread is confirmed, which is comparable to that of the halo field at the same metallicity. These abundance results are considered in the discussion of the chemical inhomogeneity and nucleosynthetic history of M15.National Science Foundation AST 07-07447, AST 09-08978Astronom
The Clusters AgeS Experiment (CASE). II. The Eclipsing Blue Straggler OGLEGC-228 in the Globular Cluster 47 Tuc
We use photometric and spectroscopic observations of the eclipsing binary
OGLEGC-228 (V228) to derive the masses, radii, and luminosities of the
component stars. Based on measured systemic velocity, proper motion and
distance, the system is a blue straggler member of the globular cluster 47 Tuc.
Our analysis shows that V228 is a semi-detached Algol. We obtain M=1.512 +/-
0.022 Msun, R=1.357 +/- 0.019 Rsun, L=7.02 +/- 0.050 Lsun for the hotter and
more luminous primary component and M=0.200 +/- 0.007 Msun, R=1.238 +/- 0.013
Rsun, L=1.57 +/- 0.09 Lsun for the Roche lobe filling secondary.Comment: 19 pages, 5 figures, AJ, in pres
- …