9 research outputs found

    Effects of mushroom and chicory extracts on the shape, physiology and proteome of the cariogenic bacterium Streptococcus mutans

    Get PDF
    open16siDental caries is an infectious disease which results from the acidic demineralisation of the tooth enamel and dentine as a consequence of the dental plaque (a microbial biofilm) accumulation. Research showed that several foods contain some components with antibacterial and antiplaque activity. Previous studies indicated antimicrobial and antiplaque activities in a low-molecular-mass (LMM) fraction of extracts from either an edible mushroom (Lentinus edodes) or from Italian red chicory (Cichorium intybus).Signoretto, Caterina; Marchi, Anna; Bertoncelli, Anna; Burlacchini, Gloria; Milli, Alberto; Tessarolo, Francesco; Caola, Iole; Papetti, Adele; Pruzzo, Carla; Zaura, Egija; Lingström, Peter; Ofek, Itzhak; Spratt, David A; Pratten, Jonathan; Wilson, Michael; Canepari, PietroSignoretto, Caterina; Marchi, Anna; Bertoncelli, Anna; Burlacchini, Gloria; Milli, Alberto; Tessarolo, Francesco; Caola, Iole; Papetti, Adele; Pruzzo, Carla; Zaura, Egija; Lingström, Peter; Ofek, Itzhak; Spratt, David A; Pratten, Jonathan; Wilson, Michael; Canepari, Pietr

    Differences in microbiological composition of saliva and dental plaque in subjects with different drinking habits.

    No full text
    Several foods have been shown to contain natural components (especially polyphenols) which display anti-adhesive properties against Streptococcus mutans, the aetiological agent responsible for dental crown caries, as well as inhibition of glucosyltransferases, which are the S. mutans enzymes involved in the synthesis of an adherent, water-insoluble glucan from sucrose. Other studies have demonstrated an in vitro action on oral plaque biofilm formation and desorption. This study evaluated whether the activity displayed in vitro by food compounds could affect the microbiological composition of saliva and dental plaque of subjects with a diet rich in these foods, comparing the results with those obtained from subjects with a different diet. The foods considered were: coffee, barley coffee, tea and wine. A total of 93 subjects were recruited into the study. Six samples of both plaque and saliva were collected from each subject at roughly one-monthly intervals. Total bacteria, total streptococci, S. mutans and lactobacilli counts were determined by culture in both saliva and dental plaque. The highest bacterial titres were recorded for the control population, while each drinking habit subgroup showed counts roughly one log lower than the controls. These differences in bacterial counts proved statistically significant (P<0.05). As far as dental plaque was concerned, while total counts did not significantly vary per mg of plaque in the subjects belonging to the different drinking habit subgroups, a significant decrease (P<0.05) was observed in those subjects drinking coffee, tea, barley coffee and wine when mutans streptococci and lactobacilli were evaluated. In several cases a more than one log decrease was observed. Plaque indices were also determined, and a significant (P<0.05) reduction in values was recorded in the subjects belonging the specific drinking habit subgroups compared to the control group. This study indicates that there is a correlation between consumption of specific foods and oral health in terms of reduced plaque deposition and lower counts of odontopathogens

    Support for the role of Candica spp. in extensive caries lesions of children

    No full text
    Candida spp. are frequently detected in the mouths of children with extensive caries lesions compared with caries-free subjects. In this study we evaluated the presence of Candida spp. in association with mutans streptococci and lactobacilli in the saliva of children with dental decay, before and after anti-caries treatment. Samples of saliva from 14 children with caries lesions and from 13 caries-free subjects were evaluated for the presence of mutans streptococci, lactobacilli and Candida spp. by culture. Eleven of 14 carious subjects hosted Candida spp. in their saliva as against only 2 out of 13 subjects without caries lesions. Carious subjects were treated by adopting a conventional protocol for caries disease (rinses with a mouthwash containing 0.2% chlorhexidine and fluorine). After treatment, the salivary bacterial counts decreased for mutans streptococci and in some cases for lactobacilli, but large numbers of Candida spp. remained in the saliva of several children. The latter were treated with the antifungal drug nystatin (oral rinses) and evaluation of the level of yeasts in the saliva showed disappearance of the microorganism in several cases. The results indicate that antiseptic treatment alone for dental decay is not sufficient for the eradication of microorganisms potentially responsible for caries lesions, in particular when yeasts are present. We hypothesize that the oral cavity of children could act as a reservoir of fungi, and eradication could be needed to prevent both exacerbation of caries lesions, and colonization by Candida spp. of other host sites

    Adhesion of Enterococcus faecalis in the nonculturable state to plankton is the main mechanism responsible for persistence of this bacterium in both lake and seawater

    No full text
    The presence of enterococci in lake and seawater in an 18-month survey comparing molecular (PCR and quantitative PCR) and culture methods was evaluated, as well as the possibility that zooplankton could act as reservoirs for enterococci. Samples of both water and zooplankton were collected monthly from a Lake Garda site and an Adriatic Sea site. In lake water, the positive samples numbered 13 of 54 (24%) by culture and 32 of 54 (59%) when PCR was applied. In seawater, they numbered 0 of 51 by culture and 18 of 51 (35%) by PCR. Enterococci were found either totally bound to plankton or totally in water, depending on the presence or absence of plankton, respectively. These results clearly indicate that the PCR assay is a powerful tool for detecting fecal indicators and pathogens in the environment, thus providing a much more sensitive method than culture

    The anti-adhesive mode of action of a purified mushroom (Lentinus edodes) extract with anticaries and antigingivitis properties in two oral bacterial phatogens

    No full text
    BACKGROUND: In previous works we have shown that a low-molecular-mass (LMM) fraction from mushroom (Lentinus edodes) homogenate interferes with binding of Streptococcus mutans to hydroxyapatite and Prevotella intermedia to gingival cells. Additionally, inhibition of biofilm formation of both odonto- and periodonto-pathogenic bacteria and detachment from preformed biofilms have been described for this compound. Further purification of mushroom extract has been recently achieved and a sub-fraction (i.e. # 5) has been identified as containing the majority of the mentioned biological activities. The aim of this study was to characterise the bacterial receptors for the purified mushroom sub-fraction #5 in order to better elucidate the mode of action of this compound when interfering with bacterial adhesion to host surfaces or with bacteria-bacteria interactions in the biofilm state. METHODS: Candidate bacterial molecules to act as target of this compound were bacterial surface molecules involved in cell adhesion and biofilm formation, and, thus, we have considered cell wall associated proteins (CWPs), teichoic acid (TA) and lipoteichoic acid (LTA) of S. mutans, and outer membrane proteins (OMPs) and lipopolysaccharide (LPS) of P. intermedia. RESULTS: Fifteen S. mutans CWPs and TA were capable of binding sub-fraction #5, while LTA did not. As far as P. intermedia is concerned, we show that five OMPs interact with sub-fraction # 5. Capacity of binding to P. intermedia LPS was also studied but in this case negative results were obtained. CONCLUSIONS: Binding sub-fraction # 5 to surface molecules of S. mutans or P. intermedia may result in inactivation of their physiological functions. As a whole, these results indicate, at molecular level, the bacterial surface alterations affecting adhesion and biofim formation. For these antimicrobial properties, the compound may find use in daily oral hygiene

    The anti-adhesive mode of action of a purified mushroom (Lentinus edodes) extract with anticaries and antigingivitis properties in two oral bacterial phatogens.

    Get PDF
    BACKGROUND. In previous works we have shown that a low-molecular-mass (LMM) fraction from mushroom (Lentinus edodes) homogenate interferes with binding of Streptococcus mutans to hydroxyapatite and Prevotella intermedia to gingival cells. Additionally, inhibition of biofilm formation of both odonto- and periodonto-pathogenic bacteria and detachment from preformed biofilms have been described for this compound. Further purification of mushroom extract has been recently achieved and a sub-fraction (i.e. # 5) has been identified as containing the majority of the mentioned biological activities. The aim of this study was to characterise the bacterial receptors for the purified mushroom sub-fraction #5 in order to better elucidate the mode of action of this compound when interfering with bacterial adhesion to host surfaces or with bacteria-bacteria interactions in the biofilm state. METHODS: Candidate bacterial molecules to act as target of this compound were bacterial surface molecules involved in cell adhesion and biofilm formation, and, thus, we have considered cell wall associated proteins (CWPs), teichoic acid (TA) and lipoteichoic acid (LTA) of S. mutans, and outer membrane proteins (OMPs) and lipopolysaccharide (LPS) of P. intermedia. RESULTS: Fifteen S. mutans CWPs and TA were capable of binding sub-fraction #5, while LTA did not. As far as P. intermedia is concerned, we show that five OMPs interact with sub-fraction # 5. Capacity of binding to P. intermedia LPS was also studied but in this case negative results were obtained. CONCLUSIONS: Binding sub-fraction # 5 to surface molecules of S. mutans or P. intermedia may result in inactivation of their physiological functions. As a whole, these results indicate, at molecular level, the bacterial surface alterations affecting adhesion and biofim formation. For these antimicrobial properties, the compound may find use in daily oral hygiene

    Effects of mushroom and chicory extracts on the shape, physiology and proteome of the cariogenic bacterium Streptococcus mutans.

    No full text
    BACKGROUND: Dental caries is an infectious disease which results from the acidic demineralisation of the tooth enamel and dentine as a consequence of the dental plaque (a microbial biofilm) accumulation. Research showed that several foods contain some components with antibacterial and antiplaque activity. Previous studies indicated antimicrobial and antiplaque activities in a low-molecular-mass (LMM) fraction of extracts from either an edible mushroom (Lentinus edodes) or from Italian red chicory (Cichorium intybus). METHODS: We have evaluated the antimicrobial mode of action of these fractions on Streptococcus mutans, the etiological agent of human dental caries. The effects on shape, macromolecular syntheses and cell proteome were analysed. RESULTS: The best antimicrobial activity has been displayed by the LMM mushroom extract with a bacteriostatic effect. At the MIC of both extracts DNA synthesis was the main macromolecular synthesis inhibited, RNA synthesis was less inhibited than that of DNA and protein synthesis was inhibited only by roughly 50%. The partial inhibition of protein synthesis is compatible with the observed significant increase in cell mass. The increase in these parameters is linked to the morphological alteration with transition from cocci of the untreated control to elongated cells. Interestingly, these modifications were also observed at sub-MIC concentrations. Finally, membrane and cytosol proteome analysis was conducted under LMM mushroom extract treatment in comparison with untreated S. mutans cells. Significant changes were observed for 31 membrane proteins and 20 of the cytosol fractions. The possible role of the changed proteins is discussed. CONCLUSIONS: This report has shown an antibiotic-like mode of action of mushroom and chicory extracts as demonstrated by induced morphogenetic effects and inhibition of specific macromolecular synthesis. This feature as well as the safe use of this extract as result of its natural origin render the LMM both mushroom and chicory extracts suitable for the formulation into products for daily oral hygiene such as mouthwashes or toothpastes
    corecore