6 research outputs found

    Optical observations of NEA 3200 Phaethon (1983 TB) during the 2017 apparition

    Full text link
    The near-Earth asteroid 3200 Phaethon (1983 TB) is an attractive object not only from a scientific viewpoint but also because of JAXA's DESTINY+ target. The rotational lightcurve and spin properties were investigated based on the data obtained in the ground-based observation campaign of Phaethon. We aim to refine the lightcurves and shape model of Phaethon using all available lightcurve datasets obtained via optical observation, as well as our time-series observation data from the 2017 apparition. Using eight 1-2-m telescopes and an optical imager, we acquired the optical lightcurves and derived the spin parameters of Phaethon. We applied the lightcurve inversion method and SAGE algorithm to deduce the convex and non-convex shape model and pole orientations. We analysed the optical lightcurve of Phaethon and derived a synodic and a sidereal rotational period of 3.6039 h, with an axis ratio of a/b = 1.07. The ecliptic longitude (lambda) and latitude (beta) of the pole orientation were determined as (308, -52) and (322, -40) via two independent methods. A non-convex model from the SAGE method, which exhibits a concavity feature, is also presented.Comment: 14 pages, 4 figures, 1 figure in Appendix A. Accepted for publication in Astronomy & Astrophysics (A&A

    Spin vector and shape of (6070) Rheinland and their implications

    Full text link
    Main belt asteroids (6070) Rheinland and (54827) 2001NQ8 belong to a small population of couples of bodies which reside on very similar heliocentric orbits. Vokrouhlicky & Nesvorny (2008, AJ 136, 280) promoted a term "asteroid pairs", pointing out their common origin within the past tens to hundreds of ky. Previous attempts to reconstruct the initial configuration of Rheinland and 2001NQ8 at the time of their separation have led to the prediction that Rheinland's rotation should be retrograde. Here we report extensive photometric observations of this asteroid and use the lightcurve inversion technique to directly determine its rotation state and shape. We confirm the retrograde sense of rotation of Rheinland, with obliquity value constrained to be >= 140 deg. The ecliptic longitude of the pole position is not well constrained as yet. The asymmetric behavior of Rheinland's lightcurve reflects a sharp, near-planar edge in our convex shape representation of this asteroid. Our calibrated observations in the red filter also allow us to determine HR=13.68±0.05H_R = 13.68\pm 0.05 and G=0.31±0.05G = 0.31\pm 0.05 values of the H-G system. With the characteristic color index VR=0.49±0.05V-R = 0.49\pm 0.05 for the S-type asteroids, we thus obtain H=14.17±0.07H = 14.17\pm 0.07 for the absolute magnitude of (6070) Rheinland. This a significantly larger value than previously obtained from analysis of the astrometric survey observations. We next use the obliquity constraint for Rheinland to eliminate some degree of uncertainty in the past propagation of its orbit. This is because the sign of the past secular change of its semimajor axis due to the Yarkovsky effect is now constrained. Determination of the rotation state of the secondary component, asteroid (54827) 2001NQ8, is the key element in further constraining the age of the pair and its formation process.Comment: Published in AJ, 28 pages, 4 figures, 2 table

    GRB 130831a: Rise and demise of a magnetar at z = 0.5

    Get PDF
    Open Access.--14th Marcel Grossman Meeting On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories; University of Rome "La Sapienza"Rome; Italy; 12 July 2015 through 18 July 2015; Code 142474.-- http://www.icra.it/mg/mg14/Gamma-ray bursts (GRBs) are the brightest explosions in the universe, yet the properties of their energy sources are far from understood. Very important clues, however, can be deduced by studying the afterglows of these events. We present observations of GRB 130831A and its afterglow obtained with Swift, Chandra, and multiple ground-based observatories. This burst shows an uncommon drop in the X-ray light curve at about 100 ks after the trigger, with a decay slope of α 7. The standard Forward Shock (FS) model offers no explanation for such a behaviour. Instead, a model in which a newly born magnetar outflow powers the early X-ray emission is found to be viable. After the drop, the X-ray afterglow resumes its decay with a slope typical of FS emission. The optical emission, on the other hand, displays no clear break across the X-ray drop and its decay is consistent with that of the late X-rays. Using both the X-ray and optical data, we show that the FS model can explain the emission after 100 ks. We model our data to infer the kinetic energy of the ejecta and thus estimate the efficiency of a magnetar “central engine” of a GRB. Furthermore, we break down the energy budget of this GRB into prompt emission, late internal dissipation, kinetic energy of the relativistic ejecta, and compare it with the energy of the accompanying supernova, SN 2013fu. Copyright © 2018 by the Editors.All rights reserved.Peer reviewe

    Photometry of the Didymos System across the DART Impact Apparition

    Get PDF
    On 2022 September 26, the Double Asteroid Redirection Test (DART) spacecraft impacted Dimorphos, the satellite of binary near-Earth asteroid (65803) Didymos. This demonstrated the efficacy of a kinetic impactor for planetary defense by changing the orbital period of Dimorphos by 33 minutes. Measuring the period change relied heavily on a coordinated campaign of lightcurve photometry designed to detect mutual events (occultations and eclipses) as a direct probe of the satellite’s orbital period. A total of 28 telescopes contributed 224 individual lightcurves during the impact apparition from 2022 July to 2023 February. We focus here on decomposable lightcurves, i.e., those from which mutual events could be extracted. We describe our process of lightcurve decomposition and use that to release the full data set for future analysis. We leverage these data to place constraints on the postimpact evolution of ejecta. The measured depths of mutual events relative to models showed that the ejecta became optically thin within the first ∼1 day after impact and then faded with a decay time of about 25 days. The bulk magnitude of the system showed that ejecta no longer contributed measurable brightness enhancement after about 20 days postimpact. This bulk photometric behavior was not well represented by an HG photometric model. An HG 1 G 2 model did fit the data well across a wide range of phase angles. Lastly, we note the presence of an ejecta tail through at least 2023 March. Its persistence implied ongoing escape of ejecta from the system many months after DART impact

    The Stellar Abundances and Galactic Evolution Survey (SAGES). I. General Description and the First Data Release (DR1)

    No full text
    The Stellar Abundances and Galactic Evolution Survey (SAGES) of the northern sky is a specifically designed multiband photometric survey aiming to provide reliable stellar parameters with accuracy comparable to those from low-resolution optical spectra. It was carried out with the 2.3 m Bok telescope of Steward Observatory and three other telescopes. The observations in the u _s and v _s passband produced over 36,092 frames of images in total, covering a sky area of ∼9960 deg ^2 . The median survey completenesses of all observing fields for the two bands are u _s = 20.4 mag and v _s = 20.3 mag, respectively, while the limiting magnitudes with signal-to-noise ratio of 100 are u _s ∼ 17 mag and v _s ∼ 18 mag, correspondingly. We combined our catalog with the data release 1 (DR1) of the first Panoramic Survey Telescope And Rapid Response System (Pan-STARRS, PS1) catalog, and obtained a total of 48,553,987 sources that have at least one photometric measurement in each of the SAGES u _s and v _s and PS1 grizy passbands. This is the DR1 of SAGES, released in this paper. We compared our gri point-source photometry with those of PS1 and found an rms scatter of ∼2% difference between PS1 and SAGES for the same band. We estimated an internal photometric precision of SAGES to be of the order of ∼1%. Astrometric precision is better than 0.″2 based on comparison with DR1 of the Gaia mission. In this paper, we also describe the final end-user database, and provide some science applications
    corecore