59 research outputs found

    Tendon–bone contact pressure and biomechanical evaluation of a modified suture-bridge technique for rotator cuff repair

    Get PDF
    The aim of the study was to evaluate the time-zero mechanical and footprint properties of a suture-bridge technique for rotator cuff repair in an animal model. Thirty fresh-frozen sheep shoulders were randomly assigned among three investigation groups: (1) cyclic loading, (2) load-to-failure testing, and (3) tendon–bone interface contact pressure measurement. Shoulders were cyclically loaded from 10 to 180 N and displacement to gap formation of 5- and 10-mm at the repair site. Cycles to failure were determined. Additionally, the ultimate tensile strength and stiffness were verified along with the mode of failure. The average contact pressure and pressure pattern were investigated using a pressure-sensitive film system. All of the specimens resisted against 3,000 cycles and none of them reached a gap formation of 10 mm. The number of cycles to 5-mm gap formation was 2,884.5 ± 96.8 cycles. The ultimate tensile strength was 565.8 ± 17.8 N and stiffness was 173.7 ± 9.9 N/mm. The entire specimen presented a unique mode of failure as it is well known in using high strength sutures by pulling them through the tendon. We observed a mean contact pressure of 1.19 ± 0.03 MPa, applied on the footprint area. The fundamental results of our study support the use of a suture-bridge technique for optimising the conditions of the healing biology of a reconstructed rotator cuff tendon. Nevertheless, an individual estimation has to be done if using the suture-bridge technique clinically. Further investigation is necessary to evaluate the cell biological healing process in order to achieve further sufficient advancements in rotator cuff repair

    Study protocol subacromial impingement syndrome: the identification of pathophysiologic mechanisms (SISTIM)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Subacromial Impingement Syndrome (SIS) is the most common diagnosed disorder of the shoulder in primary health care, but its aetiology is unclear. Conservative treatment regimes focus at reduction of subacromial inflammatory reactions or pathologic scapulohumeral motion patterns (<it>intrinsic </it>aetiology). Long-lasting symptoms are often treated with surgery, which is focused at enlarging the subacromial space by resection of the anterior part of the acromion (based on <it>extrinsic </it>aetiology). Despite that acromionplasty is in the top-10 of orthopaedic surgical procedures, there is no consensus on its indications and reported results are variable (successful in 48-90%). We hypothesize that the aetiology of SIS, i.e. an increase in subacromial pressure or decrease of subacromial space, is multi-factorial. SIS can be the consequence of pathologic scapulohumeral motion patterns leading to humerus cranialisation, anatomical variations of the scapula and the humerus (e.g. hooked acromion), a subacromial inflammatory reaction (e.g. due to overuse or micro-trauma), or adjoining pathology (e.g. osteoarthritis in the acromion-clavicular-joint with subacromial osteophytes).</p> <p>We believe patients should be treated according to their predominant etiological mechanism(s). Therefore, the objective of our study is to identify and discriminate etiological mechanisms occurring in SIS patients, in order to develop tailored diagnostic and therapeutic strategies.</p> <p>Methods</p> <p>In this cross-sectional descriptive study, applied clinical and experimental methods to identify intrinsic and extrinsic etiologic mechanisms comprise: MRI-arthrography (eligibility criteria, cuff status, 3D-segmented bony contours); 3D-motion tracking (scapulohumeral rhythm, arm range of motion, dynamic subacromial volume assessment by combining the 3D bony contours and 3D-kinematics); EMG (adductor co-activation) and dynamometry instrumented shoulder radiographs during arm tasks (force and muscle activation controlled acromiohumeral translation assessments); Clinical phenotyping (Constant Score, DASH, WORC, and SF-36 scores).</p> <p>Discussion</p> <p>By relating anatomic properties, kinematics and muscle dynamics to subacromial volume, we expect to identify one or more predominant pathophysiological mechanisms in every SIS patient. These differences in underlying mechanisms are a reflection of the variations in symptoms, clinical scores and outcomes reported in literature. More insight in these mechanisms is necessary in order to optimize future diagnostic and treatment strategies for patients with SIS symptoms.</p> <p>Trial registration</p> <p>Dutch Trial Registry (Nederlands Trial Register) <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2283">NTR2283</a>.</p

    Surgical landmarks for the proximal portion of the axillary nerve

    No full text
    corecore