15 research outputs found

    A novel way to present flood hazards using 3D-printing with transparent layers of return period isolines

    Get PDF
    This paper examines the 3D printed results of a floodplain analysis usually used for hydrological studies to calculate the probabilities in high water stage features. The analysis was performed using probability distributions, including Pearson type III distribution, Log-Pearson type III distribution, Gaussian (normal) distribution, Gumbel distribution, and Log-normal distribution. The maximum theoretical stages of best fitting distribution for different return periods were mapped to the Vardar and Boshava rivers in the Tikvesh Valley. Data to create the model were extracted from digital elevation models of the Vardar river target area. The extracted 3D surface model was covered with a map showing all the flooded areas in the relevant territory for different return periods as transparent layers. The data were converted into a physical model (relief map) using 3D printing methods for visualisation

    Mapping Creative Industries: A Case Study on Supporting Geographical Information Systems in the Olomouc Region, Czech Republic

    No full text
    The article presents an interdisciplinary link between the geospatial and the cultural sector. This is a unique study of Central Europe in visualizing and interpreting the spatial location of elements in cultural and creative industries. The main purpose was to create suitable visualizations and to process the spatial aspects of cultural and creative industries in a cartographical environment. A team of professionals from several fields (geoinformatics, economics, culture, social sciences, cartography) was assembled to map the creative industries in Olomouc Region, Czech Republic. A total of 1,211 subjects were identified which created the conditions for the employment of more than 5,000 people. Their turnover exceeds EUR 190,000,000 annually. This study was based on an initially examined dataset. Seven spatial analyses were applied. Thirty analogue maps and one interactive map application were created. The point character map was the most used one. The price map, as a background layer, was considered very useful for further map reading. The essential phenomena were topics of population density and transport. Based on the generated map outputs, we found that subjects had a tendency to concentrate in the city center or in areas with higher prices and service levels

    Non-Spatial Data towards Spatially Located News about COVID-19: A Semi-Automated Aggregator of Pandemic Data from (Social) Media within the Olomouc Region, Czechia

    No full text
    The article describes the process of aggregation of media-based data about the coronavirus pandemic in the Olomouc region, the Czech Republic. Originally non-spatially located news from different sources and various platforms (government, social media, news portals) were automatically aggregated into a centralized database. The application “COVID-map” is an interactive web map solution which visualizes records from the database in a spatial way. The COVID-map has been developed within the Ad hoc online hackathon as an academic project at the Department of Geoinformatics, Palacký University Olomouc, Czech Republic. Alongside spatially localized data, the map application collects statistical data from official sources e.g., from the governmental crisis management office. The impact of the application was immediate. Within a few days after the launch, tens of thousands users per day visited the COVID-map. It has been published by regional and national media. The COVID-map solution could be considered as a suitable implementation of the correctly used cartographical method for the example of the coronavirus pandemic

    Characterizing the Grating-like Nanostructures Formed on BaF<sub>2</sub> Surfaces Exposed to Extreme Ultraviolet Laser Radiation

    No full text
    Monocrystalline barium fluoride (BaF2) slab targets were irradiated by focused 46.9-nm laser radiation at various fluence levels above the ablation threshold. Well-developed ablation patterns with sharp edges were studied by AFM (atomic force microscopy). Their inner surfaces were uniformly covered by periodic structures. The spatial period of the ripples depends on the laser fluence. When the sample is rotated by 45°, the orientation of the grating-like structure changes accordingly. Thus, the grating vector of the periodic structure seems to be coupled to the crystallographic planes of the single crystal. This means that the XUV-laser induced ripples reported here differ from LIPSS (laser-induced periodic surface structures) associated with interference phenomena occurring on illuminated surfaces. Therefore, other mechanisms are discussed to explain the formation of the periodic nanostructures reported in this article

    X-ray Spectroscopic Studies of a Solid-Density Germanium Plasma Created by a Free Electron Laser

    No full text
    The generation of solid-density plasmas in a controlled manner using an X-ray free electron laser (XFEL) has opened up the possibility of diagnosing the atomic properties of hot, strongly coupled systems in novel ways. Previous work has concentrated on K-shell emission spectroscopy of low Z (&lt;= 14) elements. Here, we extend these studies to the mid-Z(=32) element Germanium, where the XFEL creates copious L-shell holes, and the plasma conditions are interrogated by recording of the associated L-shell X-ray emission spectra. Given the desirability of generating as uniform a plasma as possible, we present here a study of the effects of the FEL photon energy on the temperatures and electron densities created, and their uniformity in the FEL beam propagation direction. We show that good uniformity can be achieved by tuning the photon energy of the XFEL such that it does not overlap significantly with L-shell to M-shell bound-bound transitions, and lies below the L-edges of the ions formed during the heating process. Reasonable agreement between experiment and simulations is found for the emitted X-ray spectra, demonstrating that for these higher Z elements, the selection of appropriate XFEL parameters is important for achieving uniformity in the plasma conditions

    Direct LiF imaging diagnostics on refractive X-ray focusing at the EuXFEL High Energy Density instrument

    No full text
    The application of fluorescent crystal media in wide-range X-ray detectors provides an opportunity to directly image the spatial distribution of ultra-intense X-ray beams including investigation of the focal spot of free-electron lasers. Here the capabilities of the micro- and nano-focusing X-ray refractive optics available at the High Energy Density instrument of the European XFEL are reported, as measured in situ by means of a LiF fluorescent detector placed into and around the beam caustic. The intensity distribution of the beam focused down to several hundred nanometers was imaged at 9 keV photon energy. A deviation from the parabolic surface in a stack of nanofocusing Be compound refractive lenses (CRLs) was found to affect the resulting intensity distribution within the beam. Comparison of experimental patterns in the far field with patterns calculated for different CRL lens imperfections allowed the overall inhomogeneity in the CRL stack to be estimated. The precise determination of the focal spot size and shape on a sub-micrometer level is essential for a number of high energy density studies requiring either a pin-size backlighting spot or extreme intensities for X-ray heating

    Electronic Energy Transport in c-Si Irradiated with X-ray Beam Under Grazing Incidence Angles

    No full text
    The rapid development of a new generation of X-ray radiation sources providing ultrashort (from atto- to femtoseconds) pulses creates unique possibilities for generating high energy density states of matter. Instruments, like free-electron lasers (FELs) produce pulses of very high intensity and allow to extend the optical studies of radiation induced phase transitions of solids. The excitation of solid materials with x-ray femtosecond pulses offers a number of advantages over irradiation with femtosecond optical lasers. First of all the energy deposition process is not influenced by optical nonlinearities i.e. multiphoton absorption and free carrier absorption. Moreover the absorption depth can be varied over many orders of magnitude. E.g. for silicon it changes from a few nanometres up to hundreds of microns. Therefore, ultrashort X-ray pulses allow the preparation of well-defined excitation conditions in variable sample volumes and thus to study the energy transport processes. Single shot irradiations of the Si flat mirror were performed at SACLA FEL facilities in the range of 5.5 – 12 keV photon energies, at normal and grazing incidence angles. Observed radiation induced structural modification of materials is related to melting of silicon and its resolidification and a have threshold nature. The experimental damage thresholds are the highest in case of the irradiations below the critical angles. In these cases the energy density of the radiation absorbed at the sample’s surface can reach above a melting threshold (approx. 1eV/atom) without any structural modification. This may be explained by the transport of the energy out of the excitation volume (limited to the absorption skin depth) by hot electrons on the time scales shorter than the one typical for the electron-phonon coupling (~2 ps for Si). Modelling of the energy transport by ballistic electrons has been performed by means of the PENELOPE simulation code

    Fluence thresholds for grazing incidence hard x-ray mirrors

    No full text
    X-ray Free Electron Lasers (XFELs) have the potential to contribute to many fields of science and to enable many new avenues of research, in large part due to their orders of magnitude higher peak brilliance than existing and future synchrotrons. To best exploit this peak brilliance, these XFEL beams need to be focused to appropriate spot sizes. However, the survivability of X-ray optical components in these intense, femtosecond radiation conditions is not guaranteed. As mirror optics are routinely used at XFEL facilities, a physical understanding of the interaction between intense X-ray pulses and grazing incidence X-ray optics is desirable. We conducted single shot damage threshold fluence measurements on grazing incidence X-ray optics, with coatings of ruthenium and boron carbide, at the SPring-8 Angstrom compact free electron laser facility using 7 and 12 keV photon energies. The damage threshold dose limits were found to be orders of magnitude higher than would naively be expected. The incorporation of energy transport and dissipation via keV level energetic photoelectrons accounts for the observed damage threshold

    Results from single shot grazing incidence hard x-ray damage measurements conducted at the SACLA FEL

    No full text
    With the development of hard X-ray free electron lasers, there is a pressing need to experimentally determine the single shot damage limits of presently used and potential future optical coating materials. To this end we present damage results, and analysis of fluence threshold limits, from grazing incidence geometry experiments conducted at the Spring-8 Angstrom Compact free electron LAser (SACLA) on Carbon coatings at 7 and 12 keV photon energies
    corecore