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Article

Image-based and machine learning-guided
multiplexed serology test for SARS-CoV-2
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Andras Kriston,2,8 Reka Hollandi,2 Katalin Burian,9 Gabriella Terhes,9 Adam Visnyovszki,10 Eszter Fodor,11

(Author list continued on next page)

SUMMARY

We present a miniaturized immunofluorescence assay (mini-IFA) for measuring antibody response in patient

blood samples. Themethod utilizesmachine learning-guided image analysis and enables simultaneousmea-

surement of immunoglobulin M (IgM), IgA, and IgG responses against different viral antigens in an automated

and high-throughput manner. The assay relies on antigens expressed through transfection, enabling use at a

low biosafety level and fast adaptation to emerging pathogens. Using severe acute respiratory syndrome co-

ronavirus 2 (SARS-CoV-2) as themodel pathogen, we demonstrate that thismethod allows differentiation be-

tween vaccine-induced and infection-induced antibody responses. Additionally, we established a dedicated

web page for quantitative visualization of sample-specific results and their distribution, comparing themwith

controls and other samples. Our results provide a proof of concept for the approach, demonstrating fast and

accurate measurement of antibody responses in a research setup with prospects for clinical diagnostics.

INTRODUCTION

Here, we describe a scalable and automated high-content, mi-

croscopy-based mini-immunofluorescence assay (mini-IFA) for

serological testing; i.e., detection of antibodies. Unlike conven-

tional IFA, which often relies on use of cells infected with the

target pathogen, our assay employs transfected cells expressing

individual viral antigens. The assay builds on a custom neural

network-based image analysis pipeline for the automated and

multiplexed detection of immunoglobulins (immunoglobulin G

[IgG], IgA, and IgM) in patient samples. As a proof of concept,

we employed high-throughput equipment to set up the assay
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MOTIVATION Serological assays are essential for studying and controlling infectious disease outbreaks,

such as the current coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2). Immunofluorescence assays relying on cells infected with a given

virus provide rapidly available means for demonstrating antibody response against emerging pathogens.

However, setting up such assays may require a high-biosafety-level facility for handling the virus. In addi-

tion, such assays are often low throughput, and interpretation of the results can be labor intensive and sub-

jective. Here, we describe a mini-immunofluorescence assay (mini-IFA), an automated, high-throughput,

microscopy-based serology assay requiring a low-biosafety-level environment. We demonstrate its effi-

cacy using SARS-CoV-2 as a model.
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for measuring antibody response against severe acute respira-

tory syndrome coronavirus 2 (SARS-CoV-2) infection with spike

(S), membrane (M), and nucleo (N) proteins and the receptor-

binding domain (RBD) as the antigens. We compared the auto-

mated mini-IFA results from hundreds of patient samples to

the visual observations by human experts and to the results ob-

tained with conventional ELISA as well as the conventional virus

IFA. The comparisons demonstrated a high correlation with

both, suggesting high sensitivity and specificity of the mini-IFA.

By testing pre-pandemic samples and those collected from pa-

tients with RT-PCR-confirmed SARS-CoV-2 infection, we found

the mini-IFA to be most suitable for IgG and IgA detection. The

results demonstrated N and S proteins as the ideal antigens,

and the use of these antigens can serve to distinguish between

vaccinated and infected individuals. The assay principle

described enables detection of antibodies against practically

any pathogen, and none of the assay steps require a high-

biosafety-level (BSL) environment, unlike many IFA assays1.

The simultaneous detection of multiple Ig classes allows for dis-

tinguishing between recent and past infection. The mini-IFA

pipeline is highly flexible because it does not necessarily require

complex automation or a specific microscope. The basic

requirement is only a basic fluorescence microscope capable

of imaging multiwell plates. The unique key element is the anal-

ysis pipeline, which can be performed regardless of the location,

sample preparation equipment, or microscope used.

RESULTS

Mini-IFA offers a robust and scalablemethod for analysis

of serum antibodies against SARS-CoV-2 antigens

Laboratory method

See Figure 1, steps 1–4, and STAR Methods for the standard

operating procedure [SOP]. The cell line of interest (here, Afri-

can green monkey kidney cells, Vero E6) is separately trans-

fected with plasmids encoding four SARS-CoV-2 antigens (S

with a His tag [S-pCAGGS];2 M with a hemagglutinin [HA] tag

[M-pEBB]; N with a His tag [NP-pCAGGS];3 and the RBD of

S with a His tag [RBD-pCAGGS]2) (see STAR Methods for ma-

terials and methods and the Key resources table). The trans-

fected cells in suspension are transferred to 384-well assay

plates with high-throughput automation. Transient transfection,

as opposed to stable transfection, allows simultaneous control

of the background signal and detection of autoantibodies

based on non-transfected cells included in the same well. Pa-

tient sera and assay controls (Figures 2A and S1), as well as

a DNA-binding dye (Hoechst 33342) are added to the wells

with an acoustic dispenser to simultaneously monitor the accu-

racy and success of the sample transfer. Each of the assays

(and plates) includes several positive (and negative) controls,

which allows for comparing the results between assays and

the measurement of transfection percentage, enabling cross-

assay standardization. Ig classes present in the samples are

detected by multiplexed immunostaining with fluorescently

labeled antibodies for IgM (Alexa Fluor 488 [AF488]), IgG (Dy-

Light 55 [DL550]), and IgA (AF647). Transfection efficiency

(Table S1A) is controlled by staining with antibodies (Key re-

sources table) targeting the respective (His/HA -tagged) anti-

gens and/or antigen-specific antisera. We image four different

fluorescent channels with high-content microscopy to detect

(1) IgG, (2) IgA, (3) IgM, and (4) cell nuclei (Figures 2A, 2B,

S1). The method can be modified to include any antibodies/

markers; however, any new marker will require a new training

set for machine learning (ML) models (STAR Methods). Here,

we excluded the cytoplasmic marker to include the transfection

controls/additional Ig classes in the basic four-channel micro-

scopy set-up.

Computational analysis

Computational analysis is detailed in Figure 1, steps 5–8. The

analysis pipeline includes the processing of the microscopy im-

ages, per-cell and per-well predictions, and the visualization of

the results. The images were processed with the BIAS soft-

ware,4,5 facilitating pre-processing,6 deep-learning-based cell

segmentation7 (Figure 2C), and feature extraction (STAR
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Methods). We developed dedicated Python scripts to use

these features for prediction of antibody response through su-

pervised ML (GitHub: https://github.com/fimm-covid-19-hca/

mini-IFA_paper). More specifically, we trained models to classify

each segmented immunostaining phenotype, represented by

the extracted image features, into five classes: ‘‘positive,’’

‘‘negative,’’ ‘‘atypical,’’ ‘‘small bright,’’ and ‘‘trash’’ (Figures 2D

and 2E; see class design rationale in STARMethods). As training

data, we labeled 55,496 cells across 16 plates (four plates for

each antigen) with roughly equal proportions per antigen

(Table S2). Labels were assigned in BIAS software4,5 as previ-

ously described,8 using an active learning feature9 to increase

training data quality. We avoid model bias through class imbal-

ances by including class weights in the training. To account for

potential signal variations across plates and batches, image fea-

tures were normalized based on per-plate controls. We em-

ployed leave-one-plate-out cross-validation to (1) determine

the best of three normalization approaches and (2) select the

best classification model and hyperparameters for each Ig

class-antigen pair. Performance was scored on prediction

sensitivity 3 specificity, and one plate was left out as a

validation set in each fold to assess the method’s generalization

potential as prediction quality on unseen plates—a typical sce-

nario for the assay’s clinical application.We found that themodel

can classify individual cells accurately with a specificity of 0.96–

0.97, 0.95–0.96, and 0.96–0.97 and a sensitivity of 0.84–0.89,

0.79–0.84, and 0.82–0.86 for IgG, IgA, and IgM, respectively

(STAR Methods; Figures S2A and S2B; Table S3). Following

this selection, we re-trained the best classification model/

hyperparameter configuration on the entire training dataset, pro-

cessed with the best normalization scheme. We applied the

trained model to a separate experimental test dataset, including

samples from four plates, separately for each antigen to pro-

Figure 1. The miniaturized immunofluores-

cence assay (mini-IFA) pipeline

Vero E6 cells, transfected to express SARS-CoV-2

Ags (N, M, R, and S), are fixed in 384-well plates for

incubation with serum samples. The immuno-

globulins (IgG, IgA, and IgM) are detected simul-

taneously with fluorophore-labeled secondary Abs

using automated high-content fluorescence mi-

croscopy. Machine learning is employed for (1)

nuclei and cell segmentation and (2) phenotypic

cell classification. The results are presented via a

decision support system, which also allows inter-

active visual observation of the raw images. For a

full explanation with numbers, see the main text.

duce per-cell predictions. Based on

these predictions, we calculated a per-

well positivity score as the ratio of pre-

dicted positive cells over all segmented

cells. The user can define the cutoff

of this value based on positive and nega-

tive controls (see STAR Methods and

webpage: https://fimm-covid-19-hca.

github.io/ for data visualization graphs

showing the sample distribution

compared with the positive and negative controls), resulting in

binary per-well antibody response predictions.

Visualization

Quality control (QC) assessment with an automated script is avail-

able to control the assay’s quality, including cell seeding and sam-

ple transfer accuracy as well as signal distribution for positive and

negative controls (Figure 3; Table S1B). The data are visualized

with (interactive) plots and heatmaps (Figure 3; Data S1).

The test can be adapted and scaled to be used in other

laboratories

To (1) evaluate the assay’s technical scalability and adaptability

to a laboratory without advanced automation and (2) test a vari-

ation that measures the IgG/IgA signal only in antigen-trans-

fected cells (recognized with the His tag), shipped ready-to-go

assay plates (cells transfected with the virus antigen and fixed)

or manually prepared assay plates were utilized in another labo-

ratory (Biological Research Centre, Szeged, Hungary; see STAR

Methods and Figure S3 for the semi-automatedmethod). Single-

cell phenotypic analysis was performed with BIAS software as

described previously.5 The results are displayed in detail in the

STAR Methods and Figures S5–S7.

Altogether, we processed 948 (n = 583 at the Institute for Mo-

lecular Medicine Finland [FIMM]) serum or plasma specimens

collected in 2017 and 2020, with ethics approval and informed

consent (STAR Methods; Table S4) from 890 (n = 542 at FIMM)

donors, of which 181 (n = 42 at FIMM) were individuals with a

positive SARS-CoV-2 RT-PCR and/or ELISA test result.

The interactive visualization of mini-IFA assay results

provides a further decision support tool

Because the results include thousands of data points, we devel-

oped automated scripts for the visualization of the quality

Cell Reports Methods 3, 100565, August 28, 2023 3
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assessment as well as for the assay results. The visualization in-

cludes assay control data and plate-based heatmaps (Figure 3).

The results, allowing the observer to view images of each (pa-

tient) sample separately for all antibody (Ab)/antigen (Ag) scores,

are visualized as interactive plots (plate-based; STAR Methods).

The plots allow the clicking of the data point and opening of the

image of the selected sample in a separate window for additional

visual evaluation and as heatmaps (Figure 3; Data S1).

This enables a fast digital (re)view of the results, independent

of place and time, with quantitatively scored findings, and fast

prioritization of the serum samples for further tests; e.g., for a

Figure 2. Examples of microscopy images,

classifications, and predictions

(A) Examples of microscopy images of specific IgG

(DL550, orange), IgA (AF647, red), and IgM (AF488,

green) responses against SARS-CoV-2 spike

(S) protein in assay control serum samples obtained

from positive (COVID-19+) and neg (COVID-19–)

patients. Scale bars, 100 mm (overview images) and

10 mm (zoomed-in images).

(B) Transfection efficiency of viral Ags is determined

by immunostaining. Here, AF488-conjugated anti-

HA (green) Ab for HA-tagged M protein and in-

house rabbit anti-S Ab (AF488, green) for S protein

are shown. Scale bars, 100 mm.

(C) Visualization of non-segmented and segmented

cells. After segmentation of cell nuclei, an additional

mask is created for the ‘‘whole cell’’ by dilating the

nucleus area to a maximum of 7 mm, and the

‘‘cytoplasm’’ is determined as an area without a

segmented nucleus. Scale bars, 10 mm.

(D)Examplesofmanual labelingofcell classes for the

training set. Cells were divided into five categories:

positive, negative, atypical, small bright, and trash.

(E) Example of single-cell predictions. Shown is an

example image (IgG response against S-protein),

scaled linearly from range (quantile [0.5], quantile

[0.995]) to 0255 8-bit values for visualization pur-

poses (left). Single-cell class predictions of the same

imageweremade by themodel trained for S-protein

IgG Ab images (right). The close up shows the con-

tours of cell boundaries colored with the predicted

class color. Scale bars, 50 mm (whole-field-of-view

images) and 25 mm (close-up images). Classification

of cells to five different categories as in (D) is high-

lighted with different colors.

Unless otherwise stated, the microscopy images

presented in the figure show cells expressing the S

protein of SARS-CoV-2, and they have been linearly

adjusted from the original 16-bit image format to

improve visual appearance.

neutralizing assay or for the re-evaluation

of technically challenging samples or

borderline cases.

Different Igs responses to multiple

Ags can be simultaneously

distinguished

As shown in Figure 4A, the assay could

distinguish between serum samples

from donors that provided SARS-CoV-2-positive (coronavirus

disease 2019 [COVID-19]) and negative samples in RT-PCR

with a high level of significance, as indicated by low p values

(Table S5). The p values were lowest for the N and S proteins

for both IgA and IgG. IgM produced the least-specific responses

(Figure S4A; Table S5), mostly explained by the appearance

of unspecific staining in some samples. For IgA against the

SARS-CoV-2 M protein, rarely employed in ELISA tests, our

assay gave a high signal (i.e., positive ratio) for samples taken

within less than 2 weeks of the positive RT-PCR test result

(Figure 4A). Based on these findings, the assay enables

4 Cell Reports Methods 3, 100565, August 28, 2023
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simultaneous determination of different Ig class responses

against multiple Ags. This is beneficial (1) for separation of

SARS-CoV-2-positive and -negative cases, (2) for retrospective

timing of development of the infection and immunity against it,

and (3) for distinguishing between vaccine- and infection-

induced Ig responses.

The assay performance, compared with an expert

opinion, results in high AUC values

An indirect IFA is commonly carried out on virus-infected cells

fixed on glass slides, for which the findings rely on an expert’s vi-

sual inspection under a fluorescence microscope. To evaluate

the quality of our per-well predictions, we first performed a com-

parison against the consensus finding of six experts’ visual in-

spections. We randomly selected a balanced number of images

(IgG/IgA3 S/N/R plates) to represent the Ab reactivity for SARS-

CoV-2 Ags of expected positive (COVID-19 patient sera) and ex-

pected negative (samples collected in 2017; Table S4) cases. Im-

ages from IgM and M plates were not included because of un-

specific or unclear staining patterns. Six experienced

virologists/cell biologists annotated a set of 576 images as pos-

itive, negative, or unclear, one by one (STAR Methods). 26 im-

ages for which the experts did not reach a consensus (majority

vote: all IgA, with 23 opinions for IgA R Ag) were removed from

the evaluation (Figure 5A). Model quality was assessed by

measuring the area under the receiver operating characteristic

curve (AUC) (Figure 4B), which relates to the prediction’s sensi-

tivity and specificity and is considered optimal at a value of 1. For

IgG, the model performed at an AUC of 0.98, 0.97, and 0.98, and

for IgA it performed at an AUC of 0.96, 0.96, and 0.89 for S, N,

and R Ags, respectively.

Validation of mini-IFA provides the highest correlation

with IgG against SARS-CoV-2 Ags

Next, we compared our per-well predictions with the results of

SARS-CoV-2 ELISA tests (IgG, IgA, and IgM against N, R, and

S; see STAR Methods for more details), performed as in Amanat

et al., 2 Rusanen et al.,3 and Stadlbauer et al.10 The comparison

used 83 samples from 45 patients (#F1a; #F1b) with confirmed

SARS-CoV-2 infection detected by RT-PCR (Table S4) and 500

pre-COVID-19 samples collected in 2017 (#F2). Spearman cor-

relations between the predicted positive ratio of our assay and

the N, R, and S ELISA results were between 0.81 and 0.82 for

IgG and 0.56 and 0.80 for IgA, while IgM demonstrated the

lowest correlations, characterized by values ranging between

0.17 and 0.44 (Figures 4C and S4B; Table S6; STAR Methods).

To evaluate whether severely ill patients would demonstrate a

specific Ab pattern, we plotted the predictive positive ratios as a

function of the severity of COVID-19 disease (treated at home,

hospitalized/non-intensive care unit [ICU], and hospitalized/

ICU) (Figures 4D and S4C). Interestingly, ICU patients had higher

anti-N protein IgG and IgA levels compared with the other

groups; however, no definite conclusions can be drawn from

these findings due to the low number of samples.

Further evaluation of the assay qualitywith conventional

IFA and ELISA shows similarity to the conventional IFA

assay

To demonstrate the quantitative possibilities of the assay, we

compared the positive ratios generated from the mini-IFA assay

with the titer values of two conventional IFAmethods using either

(1) cells infected with SARS-CoV-2 or (2) cells transiently trans-

fected with SARS-CoV-2 S Ag (Figures 5B and 5C). To compare

the methods, we selected 38 SARS-CoV-2-positive samples

(confirmed with PCR), of which 33 were ELISA positive and 5

ELISA negative for anti-SARS-CoV-2 IgG Abs. We observed

that the mini-IFA assay resulted in an estimative quantitative

value similar to the titer values in conventional IFAs, although

higher amounts of samples would need to be tested for more

definite conclusions. Altogether, our findings highlight the flexi-

bility and the robustness of the mini-IFA method as well as the

utility of the produced data for serological analysis.

DISCUSSION

The automated mini-IFA method enables high-throughput

screening of Abs from a small volume of serum with good cor-

relation to ELISA and traditional IFAs, as exemplified here by

analysis of serum specimens from SARS-CoV-2-infected pa-

tients. The ability of the mini-IFA to simultaneously detect three

Ig classes and immune responses against multiple Ags can

improve diagnostic accuracy compared with single-Ag tests.

Ag presentation by transient expression in cells allows (1)

execution of the assay in a laboratory with a low BSL and (2)

use of complex Ags, including those of any new virus variants,

without the need for protein purification; thus, it has the poten-

tial to overcome the limitations of conventional IFAs (for 1) and

ELISA (for 2). In mini-IFA, the cell segmentation is based on

a well-established algorithm, and the pre-defined features

ensure the specificity of the deep convolutional neural network.

All codes are shared; however, it is essential to note that a new

MLmodel needs to be trained for each Ag. Here, we labeled, on

average, 4,500 cells in each Ag-Ab combination, which took an

expert approximately a workday.

The cell-based format used here was considered the most

physiological way to express the Ags, which is not possible

with ELISA or bead-based immunoassays. The benefit of the

assay format over ELISA or similar methods is that the assay

can be set up without purifying the expressed Ag because cells

expressing the Ag are enough for mini-IFA. The additional bene-

fits could include higher local Ag concentration, better folding

(although potentially distorted by fixation), and detection of

auto-Abs as well as all of the feature-based information the im-

ages can provide for scientific studies.

Figure 3. Digitalized virology with quality control and data visualization

Themini-IFA pipeline offers a comprehensive quality control (QC) report, assessing the technical performance of each assay and displaying inter- and intra-assay

variation. The QC report, prediction results, andmicroscopy images are digitally visualized and can be reviewed by an expert for an additional QC step if needed,

as well as for reporting of the results.
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The mini-IFA pipeline provides several QC steps lacking from

other serological methods. For example, we can follow up on the

nuclear intensity (providing information on the accuracy of the

serum transfer to the assay plates) and cell amount, as well as

A

B
C

D

Figure 4. Assay performance

(A) The dot plots show the distribution of sample

prediction values of IgA and IgG Ab responses for S,

R, N, and M Ags present in the serum samples ob-

tained from COVID-19-positive (COVID-19; collected

in 2020) and negative (neg; collected in 2017) patients.

The sera obtained from COVID-19+ patients are

marked to show the time from a SARS-CoV-2 positive

RT-PCR result. See Table S5 for the statistics.

(B) Comparison of the predicted values (IgG and IgA

for N, S, and R Ags) with expert data, displayed as

ROC curves.

(C) Correlation of the assay-predicted values (positiv-

ity ratios) with those of ELISA for IgA and IgG against

the S and R Ags (high-throughput ELISA: n = 46

COVID-19 patients, 80 samples; neg: n = 80 patients,

80 samples) and against the N Ag (traditional ELISA:

n = 46 COVID-19 patients, 79 samples; neg: n = 80

patients, 80 samples). ELISA values for S/R vs. N Ag

differ in scale because they were obtained via chem-

iluminescence vs. colorimetric detection, respectively.

See Table S6 for the statistics.

(D) Patient-specific Ab responses at different time

points from onset of symptoms or from obtaining a

positive SARS-CoV-2 RT-PCR result, plotted ac-

cording to COVID-19 severity (treated at home, hos-

pitalized/non-ICU, and hospitalized/ICU).

inter- and intra-assay variability (with posi-

tive, negative, and transfection controls).

A similar approach has been suggested1

and tested11 previously for SARS-CoV-2

using virus-infected cells grown under

biosafety level 3 (BSL-3) conditions. There,

the analysis focuses on scoring the ratio of

the median Ab signal between infected and

non-infected cells and using this ratio in

receiver operating characteristic (ROC)

analysis to set an optimal threshold to

deem sample either positive or negative

for IgG, IgA, and IgM Abs separately. How-

ever, in the setup of Pape et al.,1 the

response against the virus as such does

not reveal any specific responses to

different virus Ags, whereas in our assay,

the measurements of different virus Ags

can be used to differentiate vaccinated

(showing Igs only toward S /R Ag used in

the vaccine) individuals from those that suf-

fered the disease (also showing Igs to other

virus proteins).

Another benefit of our methodology is the

simplified visualization of the results, which

would enable a straightforward clinical

application. End users of the assay can

easily compare the visualizations of the semi-quantitative results

expressed as positivity ratios with sample images. This facili-

tates digital archiving, reduces bias caused by intra-/interob-

server variability, reduces microscopy workload/time, and
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A

B

C

Figure 5. Assay validation and comparison with

other methods

(A) Examples of expert annotation task images. Experts

were asked to annotate a total of 576 images as Ab positive

(pos) or negative (neg). In case they were uncertain, the

image was marked as unclear. Top left: image of IgG Ab/N,

annotated as pos with full consensus by the experts. Top

right: image of IgG Ab/N, annotated as neg with full

consensus by the experts. Bottom left: image of IgA Ab/R-

Ag with mixed expert opinions. Three experts annotated

the image as neg, two as pos, and one as unclear. Bottom

right: image of IgA Ab/R Ag annotated as unclear by all

experts and, thus, removed from the evaluation. Scale bar,

50 mm.

(B) A comparison between mini-IFA (using cells transiently

transfected with S Ag) and two conventional IFA methods

(utilizing cells infected with SARS-CoV-2 and cells trans-

fected with S Ag) was performed. Ten patient samples

were selected for the analysis based on their pos SARS-

CoV-2 RT-PCR results. Among these samples, five also

tested pos for IgG Abs against S Ag in ELISA, and five

samples tested as neg in ELISA. The barplots represent IgG

values either as the positive ratio obtained from the mini-IFA

assay or as titer values obtained from the conventional IFAs.

(C) The distribution of data points obtained from three

different immunoassays—the mini-IFA (using cells tran-

siently transfected with S Ag) and two conventional IFA

methods (either assay with SARS-CoV-2-infected cells or

assay with S Ag-transfected cells)—was assessed. The re-

sults are presented as violin plots depicting the distribution

patterns. The analysis included a total of 33 samples that

tested pos for SARS-CoV-2 in RT-PCR and exhibited IgG

reactivity in ELISA against the S Ag. The data points in the

violin plots represent IgG values either as the positive ratio

obtained from the mini-IFA assay or as titer values obtained

from the conventional IFAs.
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increases the reproducibility of the results. Thus, the assay offers

unique benefits compared with similar methods utilized for virus

diagnostics, which use infectious viruses, manual immunostain-

ing of slides, and visual inspection by an expert. The assay can

be used, for example, for kinetics and longevity studies of Ab re-

sponses induced by infection, and it could serve as a useful post-

vaccination tool for SARS-CoV-2 serosurveillance studies.

Moreover, the assay could work with virus-infected cells in the

early stages of any pandemic before the relevant viral Ags are

cloned. However, here we optimized the method for Ags pro-

duced via transfection of plasmids carrying SARS-CoV-2 struc-

tural proteins, allowing detection of Ab response against individ-

ual Ags and working in a low BSL, something not achievable

using, e.g., traditional IFAs.

The combination of high-throughput imaging and ML makes

the proposed assay an appealing alternative to existing serolog-

ical assays by providing robustness and rapid setup combined

with reasonable sensitivity. The richness of the data derived

from the images of Ab-Ag interactions gives additional informa-

tion to other immunoassays; e.g., for studies of the immune re-

sponses to specific virus proteins, some of which cannot be ex-

pressed in any other system. This is beneficial for any vaccine

development and understanding the immunogenic responses

to infection.

As exemplified by SARS-CoV-2, readily available, low-cost

serology tests are key to control epidemics. Our proof-of-concept

study for automated mini-IFA serodiagnostics, presented here,

suggests that the assay translates to various pathogens, with

high potential for wide-scale research and clinical applications.

Limitations of the study

We set up the assay at an early phase of the SARS-CoV-2

pandemic; because of this, the patient samples used for esti-

mating assay performance represent the first wave of SARS-

CoV-2 in Finland (early 2020). Because of the number of samples

analyzed, we cannot draw firm conclusions on the sensitivity of

the assay against ELISA, even though we found the mini-IFA re-

sults to be in good agreement with ELISA results. Furthermore,

we only applied a couple of serum dilutions for the mini-IFA,

because of which we were unable to estimate patient titers in

the mini-IFA vs. the respective ELISA. Testing patient samples

collected in later waves of the pandemic could allow estimating

the assay’s competence against newer SARS-CoV-2 variants as

well as completing a through comparison of the sensitivity and

specificity of the mini-IFA with traditional methods such as

ELISA.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DE-

TAILS

B Cell lines and plasmids

B Patient serum samples and ethical permissions

d METHOD DETAILS

B Automated mini-IFA assay

B Transfection

B Immunostaining

B High-content imaging

B Semi-automated mini-IFA assay

B Image processing and feature extraction

B Random Forest (RF)

B Cross-validation

B Visual inspection data

B Comparison to visual inspection data

B Comparison to ELISA

B Comparison to conventional IFA

B QC and visualization of the results

B Evaluation of the semi-automated assay results

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Statistical analysis was performed with Python scripts

B Enzyme-linked immunosorbent assay (ELISA)

B Conventional immunofluorescence assay (IFA)

d ADDITIONAL RESOURCES

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

crmeth.2023.100565.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-SARS-CoV-2 RBD-His (antiserum) Rusanen et al. 20213 N/A

Rabbit anti-SARS-CoV-2 NP-His (antiserum) Rusanen et al. 20213 N/A

Goat anti-Human IgG Fc Cross-Adsorbed

Secondary Antibody, DyLight 550

Invitrogen CAT#SA5-10135, RRID:AB_2556715

Goat anti-Human IgM (Heavy chain) Alexa

Fluor 488

Invitrogen CAT#A-21215, RRID:AB_2535800

Alexa Fluor 647 AffiniPure Goat Anti-Human

Serum IgA, a-chain specific

Jackson ImmunoResearch CAT#109-605-011, RRID: AB_2337883

Mouse monoclonal anti-His-tag antibody,

Alexa Fluor 647

BioLegend CAT#652513, RRID:AB_2716153

Mouse monoclonal anti-HA-tag antibody

16B12, Alexa Fluor 488

Invitrogen CAT#A-21287, RRID:AB_2535829

Goat anti-rabbit IgG(H + L) cross-adsorbed

secondary antibody, Alexa Fluor 488

Invitrogen CAT#A-11008, RRID:AB_143165

Goat anti-Human IgG (H + L) Cross-adsorbed

secondary antibody, Alexa Fluor 546

Invitrogen CAT#A-21089, RRID:AB_2535745

Mouse monoclonal anti-6x-His Tag antibody

(HIS.H8)

Invitrogen CAT#MA1-21315,

RRID:AB_557403

Goat anti-Mouse IgG (H + L) Highly

cross-adsorbed secondary antibody,

Alexa Fluor Plus 488

Invitrogen CAT#A32723, RRID:AB_2633275

Goat anti-Mouse IgG (H + L) highly

cross-adsorbed secondary antibody,

Alexa Fluor Plus 647

Invitrogen CAT#A32728,

RRID:AB_2633277

Biological samples

Human Serum samples Described in the STAR

Methods text with ethical

permissions, see also

Rusanen et al. 2021.3

N/A

Chemicals, peptides, and recombinant

proteins

MEM: Minimal Essential Medium Eagle Sigma CAT#M2279-500ML

L-glutamine 200 mM Gibco� Life Technologies, USA CAT#25030-024

Fetal Bovine Serum; FBS Gibco� Life Technologies, USA CAT#10270-106

Penicillin-Streptomycin (5,000 U/mL

penicillin, 5000 mg/mL streptomycin)

Gibco� Life Technologies, USA CAT#15070-063

Penicillin-Streptomycin (10,000 U/mL)

(10,000 U/mL penicillin, 10,000 mg/mL

streptomycin)

Gibco� Life Technologies, USA CAT#15140-122

0.25% Trypsin-EDTA Gibco� Life Technologies, USA CAT#25200-072

S-pCAGGS, SARS-CoV-2 spike

protein/plasmid

Amanat et al. 20202 N/A

RBD-pCAGGS, SARS-CoV-2

receptor-binding

domain/plasmid

Amanat et al. 20202 N/A

NP-pCAGGS, SARS-CoV-2

nucleoprotein/plasmid

Rusanen et al. 20213 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

M-pEBB, SARS-CoV-2 membrane

protein/plasmid

hCoV-19/Finland/1/2020 (GenBank

accession MT020781) with

pEBB-N-HA mammalian expression

plasmid. Synthetized and cloned

to the plasmid by GeneArt/Thermo

Fisher Scientific

N/A

FuGENE HD Promega CAT#E2312

OptiMEM I Reduced Serum Medium Gibco� Life Technologies, USA CAT#31985070

Hoechst 33342 Invitrogen CAT#H1399

PBS tablets Medicago CAT#09-9400-100

TBS tablets Medicago CAT#09-7500-100

Tween 20 Sigma CAT#P9416-100ML

BSA (Bovine Serum Albumin) Biowest CAT#P6154-100G

Triton X-100 Sigma CAT#T8787-100ML

DAPI PanReac AppliChem CAT#A1001

DPBS (10X), calcium, magnesium Gibco� Life Technologies, USA CAT#14080048

PierceTM 20X TBS Buffer Thermo Scientific CAT#28358

Bovine Serum Albumin Sigma-Aldrich CAT#A4503-100G

OmniPur Triton X-100 Surfactant - Calbiochem Millipore CAT#9410-1L

Deposited data

Extracted single-cell features from microscopic

images

This paper https://doi.org/10.5281/zenodo.6352550

Experimental models: Cell lines

Vero E6, African green monkey kidney cell line ATCC N/A

Software and algorithms

BIAS Single Cell Technologies https://single-cell-technologies.com/

bias-2/

Source code This paper https://doi.org/10.5281/zenodo.8158791

Other

T-75 cell culture flask CELLSTAR�, Greiner Bio-one CAT#658175

Cellcarrier ultra (PE) 384 imaging plates PerkinElmer CAT#6057302

T-75 cell culture flask Corning CAT#430641U

384 Well Microplate, PS, mClear� Greiner Bio-One CAT#781090

96 Well Microplate, PS, mClear� Greiner Bio-One CAT#655090

Labcyte 384PP (Echo� Qualified 384-Well

Polypropylene Source Microplate)

Labcyte CAT#PP-0200

Costar� 50 mL Reagent Reservoirs Corning CAT#4871

5 mL cassette MultiFlo FX Biotek N/A

8 channel 5 mL dispensing EL406 cassette (1260016) Biotek N/A

"Brad" BioTek MultiFlo FX dispenser Biotek N/A

"Elmeri" EL406 -plate washer/dispenser Biotek N/A

"Echo" Echo 525 -acoustic dispenser Labcyte N/A

Certus FLEX 0.3 (air pressure) Gyger N/A

Opera Phenix confocal microscope PerkinElmer https://www2.helsinki.fi/en/infrastructures/

bioimaging/fimm-hca

ThermoScientific SL40R Thermo Fisher ThermoScientific SL40R

Biomek FXp BeckmanCoulter Biomek FXp

Operetta CLS High-Content Analysis System PerkinElmer N/A

TIPOR-M+ 8 Channel micropipettor Orange Scientific N/A

Research plus 12 channel pipette Eppendorf N/A
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RESOURCE AVAILABILITY

Lead contact

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request (vilja.

pietiainen@helsinki.fi).

Materials availability

This study did not generate new unique reagents. The detailed info of all materials and reagents used is given in the key resources

table. The automated assay pipeline protocol is described in Methods S1.

Data and code availability

d All of the data reported in this paper will be shared by the lead contact upon request.

d Source code is available at GitHub repository: https://github.com/fimm-covid-19-hca/mini-IFA_paper.git. Extracted single-cell

features frommicroscopic images to train and testmodels are available at Zenodo: 10.5281/zenodo.6352549. DOIs are listed in

the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines and plasmids

The study made use of the following plasmids for recombinant expression of three SARS-CoV-2 proteins and receptor binding domain

(RBD; or R) of the spike (S) protein: S protein with His-tag (S-pCAGGS; described in2), RBD with His-tag (RBD-pCAGGS; described in

Amanat et al.2), membrane (M) protein with HA-tag (M-pEBB; HA-Tag) and nucleoprotein (NP; or N) with His-tag (NP-pCAGGS;

described in Rusanen et al.3) (see also key resources table). For M-pEBB, M gene, according to hCoV-19/Finland/1/2020 (GenBank

accession MT020781) sequence, was synthesized and cloned into pEBB-N-HA mammalian expression vector by GeneArt (Thermo

Fisher Scientific).

Vero E6, African green monkey kidney cell line (ATCC; mycoplasma tested), were grown in Minimal Essential Medium Eagle

(SIGMA, US) supplemented with 10% fetal bovine serum (Gibco, US), 2 mM L-glutamine (Gibco), 100 IU/mL penicillin and

100 mg/mL streptomycin (Gibco/Sigma). Vero E6 cells were cultured to a 90–95% confluence in T-75 cell culture flasks and detached

using 0.25% Trypsin-EDTA (Gibco).

Patient serum samples and ethical permissions

Information of patient samples is provided in Table S4. For automated IFA-assay (Helsinki, Finland), the SARS-CoV-2 patient sample

panels 1&2 comprised of 83 blood samples (serum, plasma) drawn from45 individuals, of whom42 had been tested positive in clinically

validated SARS-CoV-2RT-PCR test (HUSLAB, Helsinki University Hospital Laboratory Diagnostics); the panel also included three sam-

ples from COVID-19 suspects with negative/no result in SARS-CoV-2 RT-PCR. The RT-PCR testing was performed from nasopharyn-

geal swab samples. The serum samples from COVID-19 patients were drawn 8 to 81 days after onset of symptoms. In their research

article, Rusanen et al.3 established rapid LFRET immunoassays using partially overlapping samples. We are unable to provide informa-

tion on the consideration of age, gender or ethnicities in recruitment due to the anonymization of the relevant data. The data and samples

for this panel were collected under research permit HUS/211/2020 and ethics committee approval HUS/853/2020 and HUS/1238/2020

(Helsinki University Hospital, Finland). A panel of 500 serum samples collected during 2017 frompatients with suspected Puumala virus

infection served as SARS-CoV-2 antibody negative controls (Research permits HUS/167/2016, HUS/38/2018 and HUS/244/2021).

Written informed consent was obtained from all participants. The study was conducted in accordance with the Declaration of Helsinki.

For semi-automated mini-IFA assay, a total of 200 negative control sera and 165 positive samples derived from 145 patients were

provided by the Hungarian National Blood Transfusion Service, the Department of Dermatology and Allergology of the University of

Szeged and the Orthosera Ltd. We are unable to provide information on the consideration of gender or ethnicities in recruitment due

to the anonymization of the relevant data. The age range of the participants was 16–96, with the median being at age 43 (see Fig-

ure S7A). Samples predicted positive were collected from 139 RT-PCR-and/or ELISA-confirmed patients and from 6 further patients

having symptoms or tested by another method under general informed consent. The sera were stored at�80�C and heat inactivated

at 56�C for 60 min before the assay.

Sample collection and this study was approved by the Scientific and Research Ethics Committee of the Hungarian Medical

Research Council (clearance numbers IV/3457-2/2020/EKU and IV/3757-4/2020/EKU). The study was conducted in accordance

with the Declaration of Helsinki.
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METHOD DETAILS

Automated mini-IFA assay

The assay pipeline protocol is provided in Methods S1

Transfection

Vero E6 cells were transfected using FuGENE HD (Promega, US) at 3.5:1 reagent to plasmid ratio. The FuGENE HD-plasmid mixes

were prepared in Opti-MEM (Gibco) following the manufacturer’s protocol, after 10–15 min complex formation, a suspension of tryp-

sinized Vero E6 cells in fully supplementedmedia was added, the resulting suspension was incubated at RT for 15–30min in rotation,

and the cells were seeded onto plates either manually or with automation.

In the automated assay, the transfected cells were seeded to CellCarrier Ultra 384-well microplates (PerkinElmer, US) with a seed-

ing density of approximately 3–4 x 10̂ 3 cells/well in 25 mL per well using MultiFlo FX RAD dispenser (BioTek, US) and incubated at

37�C humidified atmosphere for 48 h in the growth media. Cells were fixed in 4% PFA for 15 min at RT, washed twice with PBS, and

filled with fresh PBS. The plates were stored at 4�C prior to use. Liquid dispensing and aspiration were performed using EL406 -plate

washer/dispenser (Biotek).

Immunostaining

Washing, liquid dispensing and aspiration were performed with EL406, buffer dispensing with Certus FLEX 0.3 (Gyger) and serum

dispensing with Echo 525 (LabCyte). Cell permeabilization and blocking of the unspecific binding were performed using 0.25%Triton

X-100 in Tris-buffered saline (TBS) (0.05 M Tris-HCI, 0.15M NaCl, pH 7.6), containing 3% bovine serum albumin (Biowest, US) for

15 min at RT. Cells were washed three times with TBS before serum samples were applied on wells. Two different dilutions of

each serum sample were used; 1:25 (for detection of IgA; IgM) and 1:100 (for detection of IgG) in 0.5%BSA in TBSwith 1:5000 dilution

of Hoechst 33342 (Lifetech) and incubated at RT for 1.5 h. After washing steps, the fluorochrome-conjugated secondary antibodies,

goat anti-human IgG DyLight 550 (1:500; Invitrogen, US), goat anti-human IgM AlexaFluor (AF) 488 (1:1000, Invitrogen) and goat anti-

human Serum IgA AF647 (1:1000; Jackson ImmunoResearch, US), were used for detecting different immunoglobulins from patient

sera by incubating them in the wells for 45 min at RT. To determine the transfection percentage, mouse anti-His-tag antibody AF647

(1:1000, BioLegend, US; for S, N, and R-protein transfections), mouse anti-HA tag AF488 (1:1000, Invitrogen; for M-protein transfec-

tion) and in-house rabbit anti-N and anti-S/R stained with AF488 secondary antibody (1:1000, Invitrogen) were used. All assay plates

had five wells reserved for the transfection controls. For more accurate calculations of transfection efficacy, a parallel set of plates

with transfected Vero E6 cells were stained with antibodies for each antigen as described above, and a transfection control andmean

transfection percentages were calculated from images captured as described below. The transfection percentage was determined

by selecting a mean intensity cut-off for immuno-stained transfected cells and calculating the percentage of transfected cells of all

cells. The transfection rates for N, R, S, and M are shown in Table S1A.

High-content imaging

Opera Phenix confocal spinning-disk high content screening microscope (PerkinElmer, Inc., Waltham, MA, USA) was used for im-

aging of 384-well plates for automated IFA-assay (High Content Imaging and Analysis Unit, FIMM, HiLIFE, University of Helsinki,

Finland). Screening was conducted with a 20x water immersion objective (NA 1.0, working distance 1.7 mm, depth of focus

1.8 mm, effective xy resolution 0.66 mm) and four excitation lasers (405 nm with emission band-pass filter 435/480; ex 488, em

500/550; ex 561, em 570/630; ex 647, em 650/760). Nine fields-of-view with 5% overlap were imaged per well using two predeter-

mined Z focus planeswith laser-based autofocusing. The imageswere capturedwith two Andor Zyla sCMOScameras (16-bit, 2160 x

2160 px, 6.5 mm pixel size).

Semi-automated mini-IFA assay

First, we tested the protocol in 96-well plate set-up for the first 40 samples, with manually transfected plates (for transfection effi-

ciency, see Table S1A). In the manual protocol, after 15 min incubation with the transfection mix, the cells were seeded to black

96-well tissue culture plates (Greiner, Austria) with a density of 12,000 cells/well. After 48 h incubation, culture medium was removed

and the cells were washedwith DPBS, fixedwith 4%PFA for 10min at RT, washed again with DPBS twice and stored in DPBS at 4�C.

For the manual protocol, 8- and 12-channel pipettes and 50 mL reagent reservoirs were used.

Additional 325 samples were investigated on ready-to-go plates produced by the automated method. Permeabilization was per-

formed in 3% BSA with 0.2% Triton X-100 in TBS for 5 min at RT and blocking was done in 5% BSA in TBS for 60 min at RT. Serum

samples diluted in 1:25 ratio in 0.5% BSA in TBS were incubated on the plates for 90 min at RT. AF546-conjugated anti-human IgG

(1:500; Invitrogen) along with AF488-conjugated anti-human IgM (1:1000; Invitrogen) or AF647-conjugated anti-human IgA (1:1000;

Jackson ImmunoResearch) were applied for 120 min at RT. The 6x-His Tag mouse antibody (1:1000; Invitrogen) was used for over-

night at 4�C and AFPlus488-conjugated anti-mouse IgG (1:500; Invitrogen) or AFPlus647-conjugated anti-mouse IgG (1:500; Invitro-

gen) was added for 60 min at RT to detect the His-tagged virus antigens (S, N, R) in the transfected cells in each well. Each antibody

was diluted in 1.2% BSA in TBS. Nuclei were counterstained with 200 ng/mL DAPI for 15 min at RT. Wells were washed with TBS 3

times for 5 min between each step and covered with TBS for imaging.
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Images were obtained using the Operetta high-content imaging system (PerkinElmer) with a 20x air objective (203 long WD; NA

0.45, working distance: 7.8 mm; depth of focus: 4.6 mm). Images were acquired with a Peltier cooled CCD camera (14-bit, field

of view: 675 3 509 mm2; optical xy resolution: 0.67 mm). Six fields of view were acquired per well using one Z focus plane

determined by the laser-based autofocus system. For detecting fluorophores, the following excitation and emission filters were

used: DAPI (380/40; 445/35); Alexa Fluor 488 (475/30; 525/50); Alexa Fluor 546 (535/30; 595/70); Alexa Fluor 647 (630/20; 675/50).

Image processing and feature extraction

Images obtained by both methods described were processed using BIAS software.5,8 Pipeline created for the analysis consisted of

three main steps: 1) pre-processing of the images, 2) segmentation and 3) feature extraction. In the pre-processing, a maximum in-

tensity projection was created from each stack of images in different focus depths. Non-uniform illumination was corrected sepa-

rately for each channel using the CIDRE method.6 Deep learning segmentation method7 was applied to segment nuclei in images.

From these nuclei regions, two additional segmented regions were defined: 1) the cells were defined by dilating nuclei regions with

maximum 7 mm radius so that adjacent cells did not overlap, and 2) cytoplasm regions were defined by subtracting nuclei segmen-

tation from the cell segmentation. Finally, morphological properties of these three different regions as well as intensity and texture

features from all channels were extracted (in total 255 features) for cell classification.

Single-cell phenotyping annotations (classes, numbers, distribution in cells)

For the automated method, we employed supervised machine learning to predict five different cell types: Positive (P), Negative (N),

Atypical (A) and Small Bright (S) cells as well as other artifacts that can be considered Trash (T). These classes were chosen based on

clinical diagnostics classification of microscopic findings in virological IFA assay (P, N, A, T) as well as to exclude e.g., rounded or

dying cells (S). Cells with evenly distributed high specific intensity across the whole cells were labeled as Positive, whilst cells

with low intensity were labeled as Negative. Cells with abnormally small, bright nuclei and a strong intensity of unspecific antibody

staining were considered as Small Bright, to differentiate the dying or dividing cells from the true positive cells. Cells with atypical

staining patterns, for example strong nucleus intensity, were considered as Atypical. We include an ‘‘atypical’’ class to capture cells

that phenotypically resemble positives, but present unusual staining patterns compared to the positive controls, e.g., strong nucleus

intensity. Moreover, atypical cells show higher non-specific fluorescence, and their classification thus serves as additional quality

control to highlight unspecific antibody binding. Small, segmented areas, caused by the background of the serum samples were

labeled as Trash. To enable the classifiers to capture the differences in these five classes having different staining patterns, we

used all extracted features, including intensity, morphological and texture-based features, and let the classifier to optimize the

weighting between the features instead of running any feature selection methods.

To gather training data for our predictive model, the cells were annotated using an active learning feature within the BIAS soft-

ware. We thus employed a simple machine learning setup to generate data for training a more sophisticated predictive model later

on. For active learning, a Support Vector Machine (SVM) classifier within BIAS was trained on a set of initial annotations to classify

samples from outside the training pool. The annotator then iteratively chose candidates from these new samples to extend the

training data. The annotator then retrained the active learning model, allowing for a gradual increase in classification quality. Addi-

tional samples were added to the training set until a cross-validation accuracy of at least 0.85 per antigen and antibody was

achieved. The annotations were initially performed by one expert to ensure consistency, and then checked against by other ex-

perts. We instructed the annotators to aim for a similar number of annotations in each of the five categories. Yet, the negative class

includes approximately double the number of annotations than other classes, as it is the most typical class in the data. The anno-

tators tried to focus on increasing the number of rare cases (atypical, small bright, trash) to make the training dataset more

balanced.

In total, we annotated 55 496 cells across four plates from two experimental batches, covering four viral antigens and three anti-

body classes (Table S2). Roughly the same number of cells were annotated per antigen. The number of annotations vary slightly be-

tween plates, as sometimesmore annotationswere required to surpass the 0.85 cross-validation accuracy threshold. They varymore

strongly between cell classes due to the frequency of specific examples in the respective samples.

Feature normalization. We included an additional quality control for feature normalization based on control wells as not all control

samples were transferred correctly into plates. As the serum sample and nuclear stain (Hoechst) were transferred simultaneously, we

based the quality control on the mean Hoechst signal in nuclei. We measured the mean and the standard deviation of Hoechst in-

tensity from nuclei mean intensities in each well of a plate and ruled out all control wells that were not inside [mean - 1.0*std,

mean +1.0*std] range. The range was defined by optimizing the multiplier of std using wells that were known not to have correctly

transferred samples. We found that mean +- 1.3*std was the most optimal range but to make the rule stricter we decided to use

1.0 as a multiplier.

Based on the controls, we normalized the image features per-plate to allow for model training and prediction across plates with

potentially varying signal strength. As a common requirement for some of our machine learning models, we moreover standardized

the features to approximately zero mean and unit variance. We compared three techniques, each drawing on image features from

different sets of control samples.

PosNeg: All transferred positive and negative controls

PosNegBal: The same amount of positive and negative transferred controls, based on sampling n controls from the set of trans-

ferred positive and negative controls respectively, with n being the highest number of transferred controls in both sets.
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NegOnly: Only negative transferred controls

(PosNeg) allows us to obtain a data sample which is as representative as possible for the signal in positive and negative samples,

respectively. However, the number of successfully transferred wells in either set might vary, which can lead to a shift of the mean

toward a lower or higher signal. We hence evaluated (PosNegBal) where both types of controls contribute equally to normalization

and standardization. As the signal in negative controls present mostly the background variation of the assay whereas the positive

controls have more variation due to biologically meaningful differences, and because obtaining positive control samples in the first

place can be more difficult, we also evaluated (NegOnly) which only leverages the set of negative controls. The best approach was

determined based on its performance in per-cell predictions, assessed through cross-validation.

Training, models, and used hyper-parameters (single-cell predictions). We trained and evaluated three different types of machine

learning models commonly used for the multi-class cell phenotype classification, drawing on the Python implementation in Scikit-

learn.12 For each classifier, we performed a comprehensive parameter grid search to determine the best model. Following an initial,

coarse search, we fine-tuned the following model-hyperparameter configurations.

Random Forest (RF)

We search the number of decision trees, N ˛ {50,100,200,300,500}, to avoid an overfitting of the estimator while keeping the esti-

mator complexity low. We moreover consider different numbers of features for each tree node M ˛ {#features,O(#features)}to

trade-off the reduction of variance with the increase of bias.

Support VectorMachine (SVM) with a radial basis function kernel.We evaluated the regularization parameter C˛ {0.1,1,10,50,100} to

achieve a good trade-off between a smooth decision surface, hence avoiding overfitting, and the correct classification of all training

samples. We moreover evaluated different values of the kernel parameter g ˛ {1.0,13〖10〗 n̂,53〖10〗 n̂ |n = �1,.,-4} which con-

trols the influence of individual training examples and thus the complexity of the decision boundary.

Multilayer Perceptron (ANN) with logistic activation functions. We compared neural network architectures with one to three hidden

layers of varying size{(256,128,64),(128,64,32),(256,128),(128,64),(64,32),(32,32),(128),(64),(32)} controlling the model’s complexity.

We moreover evaluated regularization parameters a ˛ {1.0,0.1,0.05,0.01,0.005,0.001}to avoid overfitting.

We avoid model bias through class imbalances by including class weights in the training. For each antigen-antibody combination,

we selected the best model based on a cross-validation of cell type predictions (Table S3).

Cross-validation

For the practical use of this assay, it is essential that the trained model can produce predictions on new, previously unseen plates for

which no training data is available. To evaluate the prediction quality of different model candidates for use in per-well predictions, we

consequently performed a 4-fold leave-one-out cross-validation on the level of plates. It has also been used to identify the best

normalization technique for cross-plate prediction.

Each cross-validation fold comprised training data of three plates and used the remaining plate as validation data. The ratio of

training to validation data per fold was thus 3:1 (e.g., for S/IgG 3920:1301; Table S2). We calculated the sensitivity, specificity,

and accuracy of predictions, and selected the best performing model (and normalization approach) based on the mean sensi-

tivity3specificity across all folds. This implements a maximum ignorance assumption on the later clinical use. If an application would

benefit to trade-off one factor against the other, the model can be re-trained based on a corresponding weighting of both measures.

The cross-validation was performed individually for each antigen-antibody combination, and the results for all tested classifiers and

normalization approaches with optimized hyperparameters (Table S7) are presented in Table S3. We also show the confusion

matrices for the ANN classifier for NegOnly and PosNegBal normalization scheme in Figures S2A and S2B.

Visual inspection data

Following the single cell cross-validation analysis we proceeded to evaluate howwell the selected optimal model works in the sample

positivity prediction task. In this task we wanted to evaluate 1) how well the predicted positive cell ratio correlates with the ground-

truth positivity measurement of the image data prepared with the presented workflow, and 2) the performance of the model on the

positivity prediction task using the same images as ground-truth.

We hence performed a separate labeling study to obtain a second type of ground-truth data, reflecting expert virologists’ judge-

ments of sample positivity and negativity based on visual inspection of the very same images that are used for predictions in the pro-

posed assay. The study was designed to closely mimic standard clinical practice. Six experts in immunofluorescence microscopy

were asked to rate each in a selection of samples, shown next to a positive and negative control, as either ’positive’, ’negative’ or

’unclear’.

The sample images were procedurally selected and processed to remove experimenter bias (Figure 5A). For each combination of

the IgG and IgA antibodies and the N, S, R antigens, we randomly picked 96 sample images from the test dataset. We selected the

same amount of 24 samples from each of the four plates in the set. We moreover enforced a distribution of 50% assumed (samples

taken before the virus outbreak vs. RT-PCR confirmed COVID-19 patients) positive and negative samples in each category to allow

for well-differentiated sensitivity/specificity curves in the later evaluation. Each image was transformed using the same color transfer

function, and only included theHoechst 33342 channel for nuclear stain and one antibody channel. The positive and negative controls

were specific to a plate and antibody/antigen combination.
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The study materials were also procedurally composed, which allowed for straight-forward randomization of samples per partici-

pant to account for ordering effects. A screen calibration image was included in the beginning of the study material pack to ensure

that all participants experience the sample and control images similarly. Each participant rated the same set of 576 samples, and

the results were parsed automatically later to avoid any errors in translating the findings. Participation in the study took approximately

2 h per participant. No sample was overlooked, resulting in a total of 1884 ’negative’, 1412 ’positive’, and 160 ’unclear’ ratings

(Figure 5A).

We assessed the inter-rater reliability, i.e., the degree towhich our participants agreedwith each other about their ratings, based on

Fleiss’ Kappa, an extension of Cohen’s Kappa to more than two raters.13,14 Calculated on ratings for the three classes ’negative’,

’positive’ and ’unclear’, we found kappa = 0.71, i.e., very good15 reliability. Following this analysis, we removed samples that

were rated ’unclear’ at least as often as they were rated ’positive’ or ’negative’. This only applied to 26 samples, i.e., the final dataset

contains 550 samples. We calculated the mean score for each sample (between 0 = negative, 1 = positive), ignoring ’unclear’ ratings.

Only 16 samples have a mean rating between 0.4 and 0.6, indicating a good consensus of sample positivity and negativity

throughout. We finally binarized the results by considering any sample with mean score >0.5 as positive.

Per-well predictions.We used the best cell type classifier and normalization scheme determined in the cross-validation to generate

binary predictions of antibody reactivity for a specific antigen and antibody. To this end, we applied the selected model to all

segmented cells identified in the respective sample well. Our per-well predictions are given as the positive ratio as the number of

positively classified cells divided by the total segmented cell count in the well.

Comparison to visual inspection data

We compared our predictions to the visual inspection data obtained from human experts as ground truth for this assay. We expect

different assay applications to favor different trade-offs between assay sensitivity and specificity and hence do not report a fixed

value. Instead, we highlight all possible trade-offs between these metrics by plotting the receiver operating characteristic (ROC)

curve. Each point on the curve reflects a different threshold to binarize our predicted positive ratio for comparison with the binarized

visual inspection ground truth. This threshold is a model hyperparameter and has an intuitive interpretation: it defines howmany cells

in thewell imagemust be predicted positive to deem the entire well positive. For application of the assay, the threshold can be chosen

arbitrarily or by evaluation on a set of validation ground truth data to obtain a specific sensitivity-specificity trade-off. We also report

the area under this curve (AUC) as a scalar, aggregate measure of classification performance across all possible thresholds (see

Figure 4B).

Comparison to ELISA

We compared our per-well predictions with ELISA results for the N, R, and S antigens of a sample subset across several test plates.

ELISA represents an alternative to our assay, but, in contrast to our visual inspection data, cannot be considered ground truth. We

consequently chose to facilitate a comparison based on Spearman’s correlation. We selected Spearman as a non-parametric, rank-

based correlation coefficient because no linear relationship between ELISA titers and our positivity ratio can be expected, and the

normality assumptions required for parametric testsmight be violated. To not bias our correlations by the substantially higher number

of negative samples, we draw a random subset of negative samples to exactly match the number of positive samples for the given

antibody and antigen combination (see Figures 4C, and S4B). In Table S6, we report the correlation mean and standard deviation for

1000 repetitions of this sampling strategy.

Comparison to conventional IFA

Two separate comparisons were performed to evaluate the quantitative performance of mini-IFA assay in comparison to conven-

tional IFA methods. The mini-IFA described here utilized cells transiently transfected with S antigen, while the conventional IFA

methods used cells infected with SARS-CoV-2 and cells transfected with S antigen (described in STAR methods). In the first com-

parison, ten patient samples were selected for analysis based on their positive SARS-CoV-2 PCR results. Among these samples, five

also tested positive for IgG antibodies against S antigen in ELISA, and five samples tested as negative in ELISA. The results were

assessed in a barplot illustrating the IgG values either as the positive ratio obtained from the mini-IFA assay, or the titer values ob-

tained from the conventional IFAs (Figure 5B).

To further evaluate the performance of the mini-IFA assay, a separate comparison was conducted showing the distribution of re-

sults. A total of 33 samples tested positive for SARS-CoV-2 (in PCR) and exhibiting IgG reactivity in ELISA against the S antigen was

selected. The results were presented as violin plots, providing a visualization of the distribution patterns and allowing for more

comprehensive assessment of the mini-IFAs quantitative performance (Figure 5C)

QC and visualization of the results

Quality control (QC) statistics give valuable information about the technical issues within the plate quality, variability, and striping due

to the dispensing errors as well as edge effects. It also helps in understanding the performance and behavior of positive and negative

controls as well as samples.16 Here, we also monitored the sample transfer by adding nuclear stain to the samples being transferred

with an acoustic dispenser. Quality control data analysis pipeline was established to follow the performance of the assay and how

different variable parameters behave (Figure 3). This included cell amount/well, and the intensity of DAPI staining, automatically
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represented as plate layout heatmaps (false color images). The positive and negative controls were plotted for each assay plate

(Table S1B), and plate-specific scatterplots were created for each sample/control data point to follow any variation and data distri-

bution. The controls can be visualized in graphs to help follow the inter- and intra-plate variation as presented in Figure 3. As an

example, inter assay variability across the S-plates (using the POS1 control on IgG values) was CV% 12.2 when normalized to the

transfection rate. The intra assay variability ranged from CV% 3.3–14.2 on S-plates (using POS1 and POS2 controls on IgG values)

when normalized to transfection rate. In the automatic method the transfection was controlled by adding transfection controls (an-

tibodies against HA- or HIS-tag and rabbit antibodies against N or S/R) to pre-determined wells (Figure 2B; Table S1A). As an

example, the transfection percentage for the four assay S-plates, calculated using the rabbit antibodies against S antigen (5 wells

per plate), were 14.5% (STD 1.6), 10.1% (STD 0.8), 13.6% (STD 2.1) and 17.9% (STD 1.3). In the semi-automated method, the trans-

fection control (HIS-tag) was included in all the wells (Figure S3B; Table S1A). Interactive graphics like scatterplots in html format help

in exploratory data analysis by showing additional information like well annotations and raw values on hovering over the points. For

the data visualization per sample, the heatmaps were created for Igs/proteins (Data S1 for IgA and IgG). R programming based

ggplot2, plotly packages and custom functions were used for data processing and visualization.17,18

Evaluation of the semi-automated assay results

Similarly, to the automated version of IFA assay, the images were processed (illumination correction, cell segmentation and feature

extraction) with BIAS software. In addition, they were further analyzed in BIAS by supervised machine-learning to predict either pos-

itive or negative status of the samples. To determine the positive ratio for the antibodies against SARS-CoV-2 proteins, the number of

cells classified as ‘‘positive’’ were divided by the cell-count of transfected (His-tag expressing) cells; parallel values were averaged,

excluding the outliers caused by technical errors. To compare the mini-IFA assay results with those from a commercially available

antibody test, we performed a recomWell SARS-CoV-2 IgG ELISA, which uses the N antigen (Mikrogen, Germany).

GraphPadPrismVersion5.03wasused to illustrate the results andperformstatistical analyses includingcorrelationswithpatient data.

Anunpaired t testwithWelch’scorrectionwasused tocompare twogroupsshowingsignificantlydifferent variances.Due to thedeviation

fromnormality,demonstratedby theShapiro–Wilk test, correlationanalyseswereperformedbycalculating thenonparametricSpearman

correlation coefficient and the related p value. In general, p values less than 0.05 were considered statistically significant.

Using the semi-automated method (Figure S3), the human IgG and IgA responses and the transfection efficacy (for S, N or R an-

tigens) were investigated side by side in eachwell on the patient sample set #H1 containing 165 samples from 145COVID-19 patients

(median age 44, IQR 34–53) and #H2 containing 200 negative control sera (Table S4). In set #H1, the SARS-CoV-2 infection was

confirmed with PCR and/or nucleocapsid-specific IgG ELISA test. Results of IgM analysis are not discussed here due to the lower

specificity and sensitivity in the assay performance.

Assay performance. Single-cell level phenotypic analysis was done in this case using all analyzed plates and there was no separate

test dataset. Confusion matrices show 10-fold cross-validation results with high accuracy for predictions (all >92%) (Figure S5). Pos-

itive and negative sample groups were separated from each other using a dot blot distribution diagram (Figure S6A). SARS-CoV-2

-infected patients did not show IgG and/or IgA positivity against all the three virus proteins, leading to high distribution ranges of the

positive samples (Figure S6A). The N-protein specific IgG data from our assay correlated strongly with the same data analyzed by

ELISA (n = 117, r = 0.8789, p < 0.0001) (Figure S6B).

Clinical observations

Using the transfection-controlled mini-IFA protocol, both IgG and IgA responses showed positive correlations with age – as previously

observed also by Yang et al.19– potentially related with trained immunity20,21 (Figure S7A). IgG positivity, but not IgA, also showedweak

correlations with length of symptomatic period, which may be a consequence of a prolonged virus replication and stronger immune re-

sponses (FigureS7B). Furthermore, the ratio of IgGpositivecells (Sprotein)was significantly different in symptomatic andasymptomatic

patients, suggesting disease severity to correlate with higher antibody levels as reported earlier22,23 (Figure S7B).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed with Python scripts

Our code is shared in the project GitHub repository. We evaluated our models’ accuracies by measuring sensitivity and specificity

using expert annotation as the ground-truth. The single-cell classification prediction was evaluated using single-cell annotations

made by an expert with leave-one-plate-out cross-validation strategy. The presented values in Results section show mean results

from four iterations of cross-validation. We evaluated the positivity ratio prediction of our models to the consensus of six experts (de-

scribes in the Visual Inspection Data section) andmeasured the area under the ROC curve. The expert annotated 576 images as pos-

itive, negative, or unclear. The expert evaluation did not reach consensus in 26 images which were removed from the evaluation.

The sample number in the study represent patient serum samples collected in 2020 and negative control samples from a study

collected in 2017. The number of these samples are presented in Patient serum samples section. When evaluating our model accu-

racy on single-cell classification, the n represents the number of expert annotated cells described in Image processing and feature

extraction section. In the sample positivity evaluation, the n represents the number of images where the expert reached consensus.

The coefficient of variation (CV%) was assessed to evaluate intra- and inter assay variability using assay plates, with a focus on the

S-antigen plates. To determine the interassay variability (CV%), the positivity ratios of POS1 control (present in four wells on each

e8 Cell Reports Methods 3, 100565, August 28, 2023

Article
ll

OPEN ACCESS



plate) were used. First, the positive ratios from each plate were normalized to the transfection controls and the mean of the four con-

trol wells were calculated for each plate. The overall mean and standard deviation (SD) of the means was determined. The CV%was

calculated by dividing the SD of the plate means by mean of plate means and multiplying the results by 100. For the assessment of

intra-assay variability (CV%) both POS1 and POS2 controls on the S-antigen plates were utilized. The CV%was calculated for each

sample duplicate by determining the SD of the duplicate, dividing it with the duplicate mean, andmultiplying the result with 100. Sub-

sequently, the average of the CV% values was calculated.

Enzyme-linked immunosorbent assay (ELISA)

An in-house ELISA for SARS-CoV-2 with antigens (R, N, and S) was used for generating the reference data for sample sets of all sam-

ple donors in Finland (Table S4) as described 2,3,10. In addition to traditional ELISA 2,3,10, used here for SARS-CoV-2 N protein with

colorimetric detection, we set up an automated high-throughput ELISA on 384-well plate format as follows: Plates (Nunc 384-well

MaxiSorp, non-sterile, #460372 for S and R) were coated with purified antigens3 in 20 mL 0.05M carbonate buffer (pH 9.6, Medicago,

Sweden) overnight at 4�C, S protein 1 mg/mL, and R antigen 1.5 mg/mL. Dispensing was performed with FritzGyger CertusFlex

(0.3 mm nozzle, 0.2 bar for all dispenses). For each 384-well plate with serum samples, six plates were coated with each antigen

to give two replicate plates for each detection antibody conjugate (anti-IgG/A/M). Plates were covered with MicroClime lids

(Labcyte/BeckmanCoulter) filled with ultra-pure water during all incubations through the assay. After antigen coating, the wells

were emptied with BioTek EL406 96 pin washer manifold, and 30 mL blocking buffer (3% non-fat milk in PBS with 0.1% Tween

20) added to all wells with EL406 syringe pump. Blocking solution was incubated for 1h RT, and the wells were washed once with

60 mL of PBST (PBS with 0.05% Tween 20) using EL406. Washing solution (PBST) was dispensed with a syringe pump. For serum

sample dilution, 15 mL of assay buffer (1% non-fat milk in PBS with 0.05% Tween 20) was added with CertusFlex. Serum samples

were pre-diluted in concentration of 1/25 to assay buffer on 384 intermediate plate (Axygen 384-well Clear V-Bottom 240 mL Poly-

propylene Deep Well Not Treated Plate, #P-384-240SQ-C) pipetting with Biomek FXp 96 head (BeckmanCoulter). Biomek FXp 384

headwas used to pipette 5 mL of 1/25 serum dilution to 15 mL of buffer on assay plates to end up with 20 mL of 1/100 dilution of serum.

Serum dilution was incubated for 2 h RT with orbital shaking 600 rpm (Heidolph Titramax 1000). Plates were washed with EL406

washer manifold and syringe pump dispensing three times with 80 mL of PBST and aspirated empty. Horseradish peroxidase

(HRP) conjugated secondary antibodies were diluted in an assay buffer as follows: goat anti human IgG-HRP 1/6000, goat anti human

IgA-HRP 1/5000, and goat anti human IgM-HRP 1/1500. Antibody solutions were dispensed to 20 mL by CertusFlex. Wells without

samples and without antigen coating were filled with an assay buffer only. After incubation of 1 h RT plates were washed three times

with 80 mL PBST as previously, and then wells filled with Pierce ECL Western Blotting Substrate (#32106) using CertusFlex. After

10 min of incubation, the plates were read for luminescence BMG Pherastar FS, with measurement interval of 1 s, and focal height

12.5 mm for Nunc plate.

For Hungarian SARS-CoV-2 positive serum samples (Orthosera Ltd., see Table S4), the commercially available recomWell SARS-

CoV-2 IgG ELISA (Mikrogen, Germany) with purified recombinant SARS-CoV-2 N protein was performed following the manufac-

turer’s instructions.

Conventional immunofluorescence assay (IFA)

"Conventional" IFA based on Vero E6 cells infected with SARS-CoV-24 served for estimating the performance of the mini-IFA.

Shortly, Vero E6 cells were inoculated with SARS-CoV-2 (first Finnish isolate described in Haveri et al.24), at two days post inoculation

the cells were trypsinized, washed with PBS andmixed at approximately 1:2 ratio with trypsinized non-infected Vero E6 cells washed

with PBS. The mixture of SARS-CoV-2 infected and non-infected cells in PBS was dispensed on 10-well microscope slides with re-

action wells (Marienfeld, No. 1216521), and after air-drying fixed with ice-cold acetone. The diluted serum samples were applied to

the wells, and after 30–45 min incubation at 37�C, the slides were washed three times with PBS and once with milliQ water, and air-

dried. Fluorescein isothiocyanite (FITC)-conjugated anti-human IgM or IgG antibodies diluted in PBS were applied to the wells, fol-

lowed by 30 min incubation at 37�C. Before mounting, the slides were washed three times with PBS, once with milliQ water, and air-

dried. The results were visually inspected using a fluorescence microscope. In addition, slides prepared as above but from Vero E6

cells transfected with S-antigen expression plasmid were utilized.

ADDITIONAL RESOURCES

A webpage was created for the visualization of quantitative sample-specific IgG results and their distribution compared to controls

and other samples, together with microscopic images. It is located at a webpage: https://fimm-covid-19-hca.github.io/. The web-

page contains separate files (.html) for interactive detection of samples’ IgG responses toward SARS-CoV-2 antigens (S, R, N, M)

on 384-well plates (S01-S04) with corresponding microscopy images. The graphs show the positive ratio (Y axis on the left; IgG)

for IgG with S/R/N/M antigen for each patient sample (X axis; Sample names). Regions of the graph can be zoomed in, and the in-

dividual data points can be hovered to view 1) the microscopic image for an IgG/Ag pair for each sample and 2) the positive ratios of

the antigen with different Igs (IgA, IgG, IgM) for each sample. The results shown are created with the automated mini-IFA assay, and

include donors’ serum sample sets #F1a, #F1b, and #F2 (see Table S4). Images of controls used in the analysis pipeline are also

shown. Webpage: https://fimm-covid-19-hca.github.io/
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