1,065 research outputs found

    SO(3) Yang-Mills theory on the lattice

    Get PDF
    We numerically investigate the phase structure of pure SO(3) LGT at zero and non-zero temperature in the presence of a Z2 blind monopole chemical potential. The physical meaning of the different phases, a possible symmetry breaking mechanism as well as the existence of an order parameter for the finite temperature phase transition are discussed.Comment: 3 pages, 2 figures LaTeX file. Uses espcrc2 style and amssymb package. Talk given at Lattice2002(nonzerot), Boston. Corrected version with one added referenc

    SO(3) vs. SU(2) Yang-Mills theory on the lattice: an investigation at non-zero temperature

    Full text link
    The adjoint SU(2) lattice gauge theory in 3+1 dimensions with the Wilson plaquette action modified by a Z(2) monopole suppression term is reinvestigated with special emphasis on the existence of a finite-temperature phase transition decoupling from the well-known bulk transitions.Comment: 13 pages, 9 figures. Based on contributions to CONFINEMENT 2003 and Lattice2003(topology). To be published in Proceedings of CONFINEMENT 2003, Tokyo, Japa

    The neutron star in Cassiopeia A: equation of state, superfluidity, and Joule heating

    Full text link
    The thermomagnetic evolution of the young neutron star in Cassiopea A is studied by considering fast neutrino emission processes. In particular, we consider neutron star models obtained from the equation of state computed in the framework of the Brueckner-Bethe-Goldstone many-body theory and variational methods, and models obtained with the Akmal-Pandharipande-Ravenhall equation of state. It is shown that it is possible to explain a fast cooling regime as the one observed in the neutron star in Cassiopea A if the Joule heating produced by dissipation of the small-scale magnetic field in the crust is taken into account. We thus argue that it is difficult to put severe constraints on the superfluid gap if the Joule heating is considered.Comment: 4 pages, 2 figures, to appear on A&A Letter

    Chaoticity and Dissipation of Nuclear Collective Motion in a Classical Model

    Get PDF
    We analyze the behavior of a gas of classical particles moving in a two-dimensional "nuclear" billiard whose multipole-deformed walls undergo periodic shape oscillations. We demonstrate that a single particle Hamiltonian containing coupling terms between the particles' motion and the collective coordinate induces a chaotic dynamics for any multipolarity, independently on the geometry of the billiard. The absence of coupling terms allows us to recover qualitatively the "wall formula" predictions. We also discuss the dissipative behavior of the wall motion and its relation with the order-to-chaos transition in the dynamics of the microscopic degrees of freedom.Comment: LateX, 11 pages, 7 figures available on request, to appear in the Proceedings of XXXIV Winter Meeting on Nuclear Physics, Bormio 22-27 January, 199

    Chaos vs. Linear Instability in the Vlasov Equation: A Fractal Analysis Characterization

    Get PDF
    In this work we discuss the most recent results concerning the Vlasov dynamics inside the spinodal region. The chaotic behaviour which follows an initial regular evolution is characterized through the calculation of the fractal dimension of the distribution of the final modes excited. The ambiguous role of the largest Lyapunov exponent for unstable systems is also critically reviewed.Comment: 10 pages, RevTeX, 4 figures not included but available upon reques

    On the temporal Wilson loop in the Hamiltonian approach in Coulomb gauge

    Full text link
    We investigate the temporal Wilson loop using the Hamiltonian approach to Yang-Mills theory. In simple cases such as the Abelian theory or the non-Abelian theory in (1+1) dimensions, the known results can be reproduced using unitary transformations to take care of time evolution. We show how Coulomb gauge can be used for an alternative solution if the exact ground state wave functional is known. In the most interesting case of Yang-Mills theory in (3+1) dimensions, the vacuum wave functional is not known, but recent variational approaches in Coulomb gauge give a decent approximation. We use this formulation to compute the temporal Wilson loop and find that the Wilson and Coulomb string tension agree within our approximation scheme. Possible improvements of these findings are briefly discussed.Comment: 24 pages, 4 eps-figures; new version matches published on

    The role of center vortices in Gribov's confinement scenario

    Full text link
    The connection of Gribov's confinement scenario in Coulomb gauge with the center vortex picture of confinement is investigated. For this purpose we assume a vacuum wave functional which models the infrared properties of the theory and in particular shows strict confinement, i.e. an area law of the Wilson loop. We isolate the center vortex content of this wave functional by standard lattice methods and investigate their contributions to various static propagators of the Hamilton approach to Yang-Mills theory in Coulomb gauge. We find that the infrared properties of these quantities, in particular the infrared divergence of the ghost form factor, are dominated by center vortices.Comment: 18 pages, 5 figure

    Two-loop critical mass for Wilson fermions

    Get PDF
    We have redone a recent two-loop computation of the critical mass for Wilson fermions in lattice QCD by evaluating Feynman integrals with the coordinate-space method. We present the results for different types of infrared regularization. We confirm both the previous numerical estimates and the power of the coordinate-space method whenever high accuracy is needed.Comment: 13 LaTeX2e pages, 2 ps figures include
    • …
    corecore