15 research outputs found

    Recurrently Predicting Hypergraphs

    Full text link
    This work considers predicting the relational structure of a hypergraph for a given set of vertices, as common for applications in particle physics, biological systems and other complex combinatorial problems. A problem arises from the number of possible multi-way relationships, or hyperedges, scaling in O(2n)\mathcal{O}(2^n) for a set of nn elements. Simply storing an indicator tensor for all relationships is already intractable for moderately sized nn, prompting previous approaches to restrict the number of vertices a hyperedge connects. Instead, we propose a recurrent hypergraph neural network that predicts the incidence matrix by iteratively refining an initial guess of the solution. We leverage the property that most hypergraphs of interest are sparsely connected and reduce the memory requirement to O(nk)\mathcal{O}(nk), where kk is the maximum number of positive edges, i.e., edges that actually exist. In order to counteract the linearly growing memory cost from training a lengthening sequence of refinement steps, we further propose an algorithm that applies backpropagation through time on randomly sampled subsequences. We empirically show that our method can match an increase in the intrinsic complexity without a performance decrease and demonstrate superior performance compared to state-of-the-art models

    Self-Guided Diffusion Models

    Full text link
    Diffusion models have demonstrated remarkable progress in image generation quality, especially when guidance is used to control the generative process. However, guidance requires a large amount of image-annotation pairs for training and is thus dependent on their availability, correctness and unbiasedness. In this paper, we eliminate the need for such annotation by instead leveraging the flexibility of self-supervision signals to design a framework for self-guided diffusion models. By leveraging a feature extraction function and a self-annotation function, our method provides guidance signals at various image granularities: from the level of holistic images to object boxes and even segmentation masks. Our experiments on single-label and multi-label image datasets demonstrate that self-labeled guidance always outperforms diffusion models without guidance and may even surpass guidance based on ground-truth labels, especially on unbalanced data. When equipped with self-supervised box or mask proposals, our method further generates visually diverse yet semantically consistent images, without the need for any class, box, or segment label annotation. Self-guided diffusion is simple, flexible and expected to profit from deployment at scale

    Incremental concept learning with few training examples and hierarchical classification

    Get PDF
    Object recognition and localization are important to automatically interpret video and allow better querying on its content. We propose a method for object localization that learns incrementally and addresses four key aspects. Firstly, we show that for certain applications, recognition is feasible with only a few training samples. Secondly, we show that novel objects can be added incrementally without retraining existing objects, which is important for fast interaction. Thirdly, we show that an unbalanced number of positive training samples leads to biased classi er scores that can be corrected by modifying weights. Fourthly, we show that the detector performance can deteriorate due to hard-negative mining for similar or closely related classes (e.g., for Barbie and dress, because the doll is wearing a dress). This can be solved by our hierarchical classi cation. We introduce a new dataset, which we call TOSO, and use it to demonstrate the e ectiveness of the proposed method for the localization and recognition of multiple objects in images.This research was performed in the GOOSE project, which is jointly funded by the enabling technology program Adaptive Multi Sensor Networks (AMSN) and the MIST research program of the Dutch Ministry of Defense. This publication was supported by the research program Making Sense of Big Data (MSoBD).peer-reviewe

    Data Augmentations in Deep Weight Spaces

    Full text link
    Learning in weight spaces, where neural networks process the weights of other deep neural networks, has emerged as a promising research direction with applications in various fields, from analyzing and editing neural fields and implicit neural representations, to network pruning and quantization. Recent works designed architectures for effective learning in that space, which takes into account its unique, permutation-equivariant, structure. Unfortunately, so far these architectures suffer from severe overfitting and were shown to benefit from large datasets. This poses a significant challenge because generating data for this learning setup is laborious and time-consuming since each data sample is a full set of network weights that has to be trained. In this paper, we address this difficulty by investigating data augmentations for weight spaces, a set of techniques that enable generating new data examples on the fly without having to train additional input weight space elements. We first review several recently proposed data augmentation schemes %that were proposed recently and divide them into categories. We then introduce a novel augmentation scheme based on the Mixup method. We evaluate the performance of these techniques on existing benchmarks as well as new benchmarks we generate, which can be valuable for future studies.Comment: Accepted to NeurIPS 2023 Workshop on Symmetry and Geometry in Neural Representation
    corecore