34 research outputs found

    Thermodynamic Limits of Spatial Resolution in Active Thermography

    Get PDF
    Thermal waves are caused by pure diffusion: their amplitude is decreased by more than a factor of 500 within a propagation distance of one wavelength. The diffusion equation, which describes the temperature as a function of space and time, is linear. For every linear equation the superposition principle is valid, which is known as Huygens principle for optical or mechanical wave fields. This limits the spatial resolution, like the Abbe diffraction limit in optics. The resolution is the minimal size of a structure which can be detected at a certain depth. If an embedded structure at a certain depth in a sample is suddenly heated, e.g. by eddy current or absorbed light, an image of the structure can be reconstructed from the measured temperature at the sample surface. To get the resolution the image reconstruction can be considered as the time reversal of the thermal wave. This inverse problem is ill-conditioned and therefore regularization methods have to be used taking additional assumptions like smoothness of the solutions into account. In the present work for the first time methods of non-equilibrium statistical physics are used to solve this inverse problem without the need of such additional assumptions and without the necessity to choose a regularization parameter. For reconstructing such an embedded structure by thermal waves the resolution turns out to be proportional to the depth and inversely proportional to the natural logarithm of the signal-to-noise ratio. This result could be derived from the diffusion equation by using a delta-source at a certain depth and setting the entropy production caused by thermal diffusion equal to the information loss. No specific model about the stochastic process of the fluctuations and about the distribution densities around the mean values was necessary to get this result.Comment: Submission to International Journal of Thermophysics. Keywords: Diffusion; Entropy production; Information loss; Kullback-Leibler divergence; Chernoff-Stein Lemma; Stochastic thermodynamics. arXiv admin note: text overlap with arXiv:1502.0021

    Heat diffusion blurs photothermal images with increasing depth

    Full text link
    In this tutorial, we aim to directly recreate some of our "aha" moments when exploring the impact of heat diffusion on the spatial resolution limit of photothermal imaging. Our objective is also to communicate how this physical limit can nevertheless be overcome and include some concrete technological applications. Describing diffusion as a random walk, one insight is that such a stochastic process involves not only a Gaussian spread of the mean values in space, with the variance proportional to the diffusion time, but also temporal and spatial fluctuations around these mean values. All these fluctuations strongly influence the image reconstruction immediately after the short heating pulse. The Gaussian spread of the mean values in space increases the entropy, while the fluctuations lead to a loss of information that blurs the reconstruction of the initial temperature distribution and can be described mathematically by a spatial convolution with a Gaussian thermal point-spread-function (PSF). The information loss turns out to be equal to the mean entropy increase and limits the spatial resolution proportional to the depth of the imaged subsurface structures. This principal resolution limit can only be overcome by including additional information such as sparsity or positivity. Prior information can be also included by using a deep neural network with a finite degrees of freedom and trained on a specific class of image examples for image reconstruction

    Breaking the Resolution limit in Photoacoustic Imaging using Positivity and Sparsity

    Full text link
    In this tutorial, we aim to directly recreate some of our "aha" moments when exploring the impact of heat diffusion on the spatial resolution limit of photothermal imaging. Our objective is also to communicate how this physical limit can nevertheless be overcome and include some concrete technological applications. Describing diffusion as a random walk, one insight is that such a stochastic process involves not only a Gaussian spread of the mean values in space, with the variance proportional to the diffusion time, but also temporal and spatial fluctuations around these mean values. All these fluctuations strongly influence the image reconstruction immediately after the short heating pulse. The Gaussian spread of the mean values in space increases the entropy, while the fluctuations lead to a loss of information that blurs the reconstruction of the initial temperature distribution and can be described mathematically by a spatial convolution with a Gaussian thermal point-spread-function (PSF). The information loss turns out to be equal to the mean entropy increase and limits the spatial resolution proportional to the depth of the imaged subsurface structures. This principal resolution limit can only be overcome by including additional information such as sparsity or positivity. Prior information can be also included by using a deep neural network with a finite degrees of freedom and trained on a specific class of image examples for image reconstructio
    corecore