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Abstract Thermal waves are caused by pure diffusion: their amplitude is decreased
by more than a factor of 500 within a propagation distance of one wavelength. The
diffusion equation, which describes the temperature as a function of space and time, is
linear. For every linear equation the superposition principle is valid, which is known
as Huygens principle for optical or mechanical wave fields. This limits the spatial
resolution, like the Abbe diffraction limit in optics. The resolution is the minimal
size of a structure which can be detected at a certain depth. If an embedded structure
at a certain depth in a sample is suddenly heated, e.g., by eddy current or absorbed
light, an image of the structure can be reconstructed from the measured temperature
at the sample surface. To get the resolution the image reconstruction can be consid-
ered as the time reversal of the thermal wave. This inverse problem is ill-conditioned
and therefore regularization methods have to be used taking additional assumptions
like smoothness of the solutions into account. In the present work for the first time,
methods of non-equilibrium statistical physics are used to solve this inverse problem
without the need of such additional assumptions and without the necessity to choose
a regularization parameter. For reconstructing such an embedded structure by thermal
waves the resolution turns out to be proportional to the depth and inversely propor-
tional to the natural logarithm of the signal-to-noise ratio. This result could be derived
from the diffusion equation by using a delta-source at a certain depth and setting the
entropy production caused by thermal diffusion equal to the information loss. No spe-
cific model about the stochastic process of the fluctuations and about the distribution
densities around the mean values was necessary to get this result.
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1 Introduction

In active thermography, subsurface-embedded structures are detected by heating the
sample surface or the structures and measuring the time-dependent surface tempera-
ture. The temperature evolution as a function of space and time is determined by the
heat diffusion equation, and its solution can be described as a composition of plain
thermal waves with different frequencies and wavenumbers [1]. The heat diffusion
equation is a macroscopic mean-value-equation in the sense that in a microscopic
picture the temperature is proportional to the mean value of the kinetic energy of the
molecules. Stochastic processes describe the statistical distributions of the fluctuations
around those mean values [2].

The detection and location of the embedded structures from the measured tem-
perature evolution at the surface are an inverse problem. In the microscopic picture,
the movement of the molecules is invertible, as the kinetic equations are invariant
to time reversal. The macroscopic mean-value-equation, for thermography the heat
diffusion equation, is not invariant to time reversal any more. Recent results from non-
equilibrium thermodynamics show that for macroscopic samples the mean entropy
production is equal to the information loss by using the macroscopic mean-value-
equation instead of the microscopic description (see Sect. 2 and ‘Appendix’). This
loss of information for the macroscopic description is the physical reason that the
inverse problem gets ill-posed and that subsurface structures cannot be detected any
more if they are lying too deep under the surface.

Thermalwaves are caused by pure diffusion: their amplitude is decreased by a factor
of e−2π ≈ 1/535 within a propagation distance of one wavelength [1]. The diffusion
equation, which describes the temperature as a function of space and time (“diffusion-
wave fields” [3]), is linear. For every linear equation, the superposition principle is
valid, which is known as Huygens principle for optical or mechanical wave fields. This
allows a composition of the solution of plane waves having different wavenumbers
and similar to the wave equation also for the diffusion equation, components with a
higher wavenumber are attenuated more than those with a lower wavenumber. This
limits the spatial resolution, like the Abbe diffraction limit in optics. The resolution is
theminimal size of a structure which can be detected at a certain depth. If an embedded
structure at a certain depth in a sample is suddenly heated, e.g., by eddy current or
absorbed light, an image of the structure can be reconstructed from the measured
temperature at the sample surface. One possibility for image reconstruction is a time
reversal of the thermal waves. This inverse problem is ill-conditioned, and therefore
regularization methods have to be used taking additional assumptions like smoothness
of the solutions into account. In the present work for the first time, methods of non-
equilibrium statistical physics are used to solve this inverse problem without the need
of such additional assumptions and without the necessity to choose a regularization
parameter.
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Reconstructing the samples interior structure from the measured signals at the sam-
ples surface is a prominent example of an inverse problem. An inverse problem is a
general framework that is used to convert observed measurements into information
about a physical object or system. Inverse problems are typically ill-posed, as opposed
to the well-posed problems more typical when modeling physical situations where the
model parameters or material properties are known. Of the three conditions for a
well-posed problem suggested by Hadamard [4] (existence, uniqueness, and stabil-
ity of the solution or solutions) the condition of stability is most often violated [5].
Even if a problem is well-posed, it may still be ill-conditioned, meaning that initially
small errors can grow exponentially. An ill-conditioned problem is indicated by a
large condition number. It needs to be re-formulated for numerical treatment. Typi-
cally, this involves including additional assumptions, such as smoothness of solution
[6]. This process is known as regularization, like truncated singular value decomposi-
tion (SVD) or Tikhonov regularization [7]. The choice of an adequate regularization
parameter, which describes the trade-off between the original ill-conditioned problem
and the additional assumptions (e.g., smoothness), is critical and has to be evaluated
for every individual problem [6]. In this paper, we propose that by using the entropy
production we get a physical background for choosing the regularization parameter
for thermographic imaging and no additional assumption is necessary.

To simplify the following calculations, two assumptions have beenmade. First, heat
diffusion is assumed to take place only in one dimension. Physically this happens in
layered structures, when the lateral dimension of these structures is big compared to
their thickness. Second, the heat source is a thin layer which is instantaneous heated in
a thick sample. Mathematically, this can be approximated by a Dirac delta function in
infinite space in one dimension. For real thermography, different boundary conditions
on the sample surface have to be used. E.g., Mandelis has solved the heat diffusion
equation in his book “Diffusion-Wave Fields” [3] in one, two, or three dimensions for
different boundary conditions. The method demonstrated here to get a thermodynamic
resolution limit for one-dimensional heat diffusion in infinite space can be generalized
to such boundary conditions and more dimensions, as discussed in Sect. 4.

To get the spatial resolution usually a fine structure which is small compared to the
resolution is imaged. Then the resolution is equal to the size of the imaged structure.
For bigger structures, the convolution of the structure with the blurring from image
resolution gives the size of the imaged structure. Using the Dirac delta function as the
initial temperature distribution ensures that the size of the imaged structure is just the
resolution. Of course the evaluated resolution is valid for any initial temperature profile
as the heat diffusion equation is a linear one. For the excitation in active thermography
often a pulse is used, e.g., a light or eddy current pulse. The pulse duration is chosen
to be short compared to the time needed for thermal diffusion along the samples struc-
tures. Mathematically, this gives again a Dirac delta function, but in time. Signals for
longer pulses can be calculated by a convolution integral using the temporal evolution
of the generation pulse. Generalizations for other generation patterns, like a sinusoidal
excitation for lock-in thermography, are discussed in Sect. 4.

In the present work it should be shown that a general thermodynamic limit of the
spatial resolution can be derived from a very recent result from stochastic thermody-
namics, which is summarized in Sect. 2 and in the ‘Appendix’: if amacroscopic system
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is kicked out of the equilibrium by a short but not necessarily small perturbation, such
as a short laser pulse, for the following dissipative process back to equilibrium the
information loss about the kick magnitude is equal to the mean entropy production.
In active thermography, the kick magnitude is no single number but the vector of the
temperature in space just after the excitation pulse (=kick) or it can be the magnitude
of all the Fourier components of the temperature wave, as used in Sect. 3.

The information loss can be quantified by the Kullback–Leibler divergence (e.g.,
[8], also called relative entropy). The Kullback–Leibler divergence D( f ||g) is used
in information theory for testing the hypothesis that the two distributions with density
f and g are different [8], and is defined as

D( f ||g) :=
∫

ln

(
f (x)

g (x)

)
f (x) dx, (1)

where ln is the natural logarithm. The Chernoff–Stein Lemma states that if n data from
g are given, the probability of guessing incorrectly that the probability distribution for
describing the data is f is bounded by the type II error ε = (

exp(−D( f ||g)))n , for n
large [8]. In that sense D( f ||g) can describe some “distance” between the distribution
densities f and g.

The inverse problem of estimating the kick magnitude from a measurement of an
intermediate state, a certain time after the kick is ill-conditioned. Just after the kick
its magnitude can be estimated very well. A long time after the kick, the state has
nearly evolved back to equilibrium and all the information about the kick magnitude
is lost. The information content at an intermediate state a time t after the kick with a
distribution density pt in comparison to the equilibrium distribution peq is D(pt ||peq).
For macroscopic systems, D is equal to the entropy production till time t Sect. 2. It
has its maximum just after the kick, when no entropy has been produced yet. Then it
decreases monotonously in time and gets zero in the limit of infinite time. But already
at some earlier cut-off time tcut, all the information about the kick magnitude is lost:
according to the Chernoff–Stein Lemma for a fixed error ε, the distribution pt at time
t cannot be distinguished from the equilibrium distribution peq if D(pt ||peq) gets
smaller than ln (1/ε) /n.

In active thermography, it is assumed that the information about the spatial pattern
from the interior structure to the surface of the sample is transferred by heat diffusion.
The “thermal wave” can be represented as a superposition of wave trains having a
certain wavenumber or frequency in Fourier k-space or ω-space, respectively [9].
Instead of a cut-off time for the whole signal, the decrease of the Kullback–Leibler
divergence in Fourier space gives a criterion for a cut-off wavenumber or a cut-off
frequency as an upper limit, where all the information about the Fourier-component
is lost because it cannot be distinguished from equilibrium according to Chernoff–
Stein Lemma. In the past we have modeled heat diffusion by a Gauss–Markov process
in Fourier space and found a principle limit for the spatial resolution [9]. Using the
information loss and entropy production for a kicked process, it will be shown in Sect. 2
that the spatial resolution depends just on the macroscopic mean-value-equations and
is independent of the actual stochastic process, as long as the macroscopic equations
describe themeanheat flowand therefore also themean entropy production as themean
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heat flow divided by the temperature. General limits of spatial resolution are derived
in Sect. 3 from the diffusion equation by using cut-off wavenumbers or frequencies
from stochastic thermodynamics.

2 Information Loss and Entropy Production for Kicked Processes

In active pulse thermography, embedded structures are detected by heating the sample
surface or the structures with a short excitation pulse, which “kicks” the sample out of
its equilibrium. The kick is a sudden temperature rise due to, e.g., optical absorption or
electromagnetic induction at the sample structures. For the reconstruction very often
the temperature distribution just after the kick is the “kickmagnitude” which should be
reconstructed, like in photothermal depth profiling of the first kind [10]. But the present
theory is valid also for other applications, e.g., determining the thickness of sample
sheets of opaque materials, like metals. When lightening the surface with a short light
pulse the heat is absorbed in a very thin surface layer. The absorbed heat diffuses into
the material, is “reflected” at the back plane (or at voids in the sample), and measured
as a temperature change of the surface. For the thermodynamic resolution limit for
such a case, the depth a as given in (13) is the doubled thickness of the sheet as the
thermal wave travels back and forth.

To derive the connection between information loss and entropy production, a gen-
eralization of the second law and of Landauers principle for states arbitrarily far from
equilibrium given recently by Hasegawa et al. [11,12] and by Esposito and Van den
Broeck in [13] is used. The main idea to deal with a non-equilibrium state pt is to
perform a sudden transition from the known Hamiltonian H with equilibrium state
peq to a new one H∗, such that the original non-equilibrium state becomes a canoni-
cal equilibrium with respect to H∗. The average amount of irreversible work for this
quench turns out to be the Kullback–Leibler divergence D(pt ||peq) times kBT , where
kB is the Boltzmann constant and T is the temperature of the system. The mean irre-
versible work for this quench is used either to change the entropy �S of the kicked
system itself or to heat the surrounding by 〈H〉pt −〈H〉eq. For macroscopic samples it
is shown in the ‘Appendix’ that the change in the system entropy �S can be neglected
compared to (〈H〉pt − 〈H〉eq)/T as fluctuations in macroscopic systems are small
compared to the changes in the mean value. Therefore, the information kBD(pt ||peq)
about the non-equilibrium state any time t after the kick can be approximated by the
mean entropy production described by the diffusion equation.

In information , kBD(pt ||peq) can be identified as the amount of information that
needs to be processed to switch from the known equilibrium distribution peq (no kick)
to the distribution pt a time t after the kick [8]. If the logarithm to the base 2 is
taken instead of the natural logarithm in (1), D(pt ||peq)measures the average number
of bits needed to describe the kick magnitude, if a coding scheme is used based on
the given distribution peq rather than the “true” distribution pt [8]. The information
theoretical interpretation of D(pt ||peq) according to the Chernoff–Stein Lemma states
that pt cannot be distinguished from peq at the cut-off time tcut if D(ptcut ||peq)becomes
smaller than ln (1/ε) /n (see Sect. 1). In the presentwork the error level ε is chosen in a
way that at the cut-off time the signal amplitude becomes less than the thermodynamic
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fluctuations (=noise level). In the next section this will be applied in the Fourier space
to determine a cut-off wavenumber or a cut-off frequency.

3 Cut-Off Wavenumber and Frequency in Fourier Space

In this section, two different inverse problems for heat diffusion are presented. For the
first inverse problem, the initial temperature profile T (x, 0) at a time t = 0 should be
reconstructed from the measured temperature T (x, tm) at one specific time tm > 0.
For the second inverse problem, the temperature T (xm, t) is measured at a specific
point xm, usually at the surface of the sample, for all times t > 0 and from that data, the
temperature T (0, t) for the point x = 0 is reconstructed. The second inverse problem
is more adequate for thermography, where the temperature can be measured only on
the surface. Nevertheless, the first inverse problem is very instructive and therefore it
is also presented here.

In active thermography, the macroscopic mean-value-equation for the temperature
T (x, t) as a function of time t and space x after the kick, which is a short heating
pulse, is the diffusion equation,

(
∂2

∂x2
− 1

α

∂

∂t

)
T (x, t) = 0 (2)

with α is the thermal diffusivity. For simplicity x has only one dimension, but the same
procedure can be used for a more dimensional space. The bilateral Fourier transform
over space and its inverse is

T̂ (k, t) =
∫ ∞

−∞
T (x, t) exp (ikx) dx

T (x, t) = 1

2π

∫ ∞

−∞
T̂ (k, t) exp (−ikx) dk, (3)

where i = √−1 and k = 2π/λ is the wavenumber, with the wavelength λ. The wave-
length quantifies the spatial resolution of T (x, t) if the wavenumber in the integral of
the Fourier transform is not taken till infinity but only to a limited wavenumber. This
limitation of the wavenumber is caused by a lower cut-off-time for higher wavenum-
bers, where the Kullback–Leibler divergence D gets too small, so that the wave trains
with a higher wavenumber cannot be distinguished from equilibrium.

For the first inverse problem we could show in [7] that for adiabatic boundary
conditions, where the sample is thermally isolated, the eigenfunctions are cosine-
functions and in k-space (Fourier transform over space), the temperature evolution in
time is a simple multiplication:

T̂ (k, t) = T̂ (k, 0) exp
(
−k2αt

)
. (4)

The eigenvalues exp
(−k2αt

)
decreasewith higherwavenumbers k “exponentially,”

and for the inverse problem the multiplication with exp
(+k2αt

)
as a huge number
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makes the reconstruction unstable for higher wavenumbers. Therefore, regularization
was used, either truncated singular value decomposition (SVD) or Thikonov regular-
ization. Results for both regularization methods were compared in [9]. The choice
of an adequate regularization parameter, that is the cut-off value for the SVD or the
trade-off parameter between the original ill-conditioned problem and the smoothness
of the solution as an additional assumption for the Thikonov regularization, is critical.
Li Voti et al. have described regularization by truncated SVD and genetic algorithms
for photothermal depth profiling [10], where the influence of the number of used
singular vectors on the reconstructed heat source profile is described. The L-curve
method was used to find the optimum value of used singular vectors. Several groups,
e.g., the group of Salazar [14], have investigated the reconstruction of thermal con-
ducting depth-profiles from thermography data, e.g., by Thikonov regularization. This
so-called photothermal inverse problem of the second kind is for small variations of
the sample thermal properties as a function of depth mathematically the same prob-
lem as reconstructing the heat source profile [10]. In [7] the L-curve method was used
to find the regularization parameter for Thikonov regularization, and in [9] a certain
stochastic process, the Ornstein–Uhlenbeck process, was used to derive the cut-off
wavenumber for the SVD. In both cases, the cut-off wavenumber kcut gave the same
result as we derive in Eq. 7, but now without choosing a regularization parameter or
using a specific stochastic process.

As initial condition at a time t = 0, the delta function T (x, 0) = δ (x) is taken, to
be sure to get the imaging resolution and not a convolution with the initial structure
(see Sect. 1), which results in a constant Fourier transform T̂ (k, t = 0) = 1. All
wavenumbers till infinity are present, which gives the best spatial resolution. λ going
to zero means that even peaks which are only separated by a very small distance
can be still reconstructed as two separate peaks. After a certain time t one gets from
thermodynamics the mean entropy in k-space (e.g., [2,9]) proportional to T̂ (k, t)2,
which shows an exponential decay in time with exp

(−2k2αt
)
, see Eq. 4;

�Sk (t) = 1

2
kBSNR

2exp
(
−2k2αt

)
(5)

with the signal-to-noise ratio SNR. The wavenumber kcut is determined by using the
Chernoff–Stein Lemma,

�Skcut (t) ≈ kBDkcut (pt ||peq) ≈ kB
1

n
ln

(
1

ε

)
(6)

If error ε is set to 1/
√
e and n = 1 for one measured temperature one gets that

the cut-off wavenumber kcut is just the wavenumber for which at a time t the signal
T̂ (kcut, t) gets less than the noise level (Fig. 1). Then

kcut =
√
ln SNR

αt
(7)
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k 

t =0

Noise level 

Reconstructed 
signal

Fig. 1 Temperature in k-space: T̂ (k, t) shows an exponential decay in time with exp(−k2αt). At kcut it
goes below the noise level. For the reconstruction only the wavenumbers less than kcut are taken

The reconstructed signal Tr (x, t) is the Fourier transform of a rectangular function,
which gives a sinc-function (see Fig. 1),

Tr (x, t) = 1

2π

∫ kcut

−kcut
exp (−ikx) dk = 1

π

sin (kcut (t) x)

x
. (8)

The resolution δr (t) is the “width” of the reconstructed signal and is taken as the
distance between the zero points of the reconstructed signal Tr (x, t) – to be on the
save side – which is the wavelength corresponding to the wavenumber kcut,

δr (t) = 2π

kcut (t)
= 2π

√
αt

ln SNR
. (9)

This is the same result as derived in [9] where we assumed that the thermal diffusion
in k-space is anOrnstein–Uhlenbeckprocess, but in thederivation above theknowledge
of the specific stochastic process is not necessary. The resolution given inEq. 9 depends
only on the diffusion equation (Eq. 2) as the equation for the mean value of the
stochastic process.

Usually in thermography the temperature is not measured on the whole sample
x at a certain time t , but at a certain x—which is usually the sample surface—the
temperature is measured at several times t . Instead of a Fourier transform (Eq. 3) to
k-space, a bilateral Fourier transform in ω-space is performed:

T̃ (x, ω) =
∫ ∞

−∞
T (x, t) exp (−iωt) dt

T (x, t) = 1

2π

∫ ∞

−∞
T̃ (x, ω) exp (iωt) dω. (10)
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Now for a certain depth a from the Fourier transform of the diffusion equation,
which is the Helmholtz equation for T̃ (x, ω), a cut-off frequency ωcut is determined
by using the Chernoff–Stein Lemma analog to Eq. 6:

ωcut = 2α

(
ln SNR

a

)2

(11)

This is consistent to a dampingwith the thermal diffusion lengthμ = √
2α/ωcut,where

the signal is damped by a factor of exp (−a/μ) to the noise level during propagation
along the length a (e.g., [1] or [3]).

The reconstructed signal Tr (a) at x = 0 is

Tr (a) = 1

π

∫ ωcut

0

1√
ωα

cos

(
a

√
ω

2α
+ π

4

)
exp

(
−a

√
ω

2α

)
dω

= 2

π

sin (k (a) a)

a
exp (− (k (a) a))with k (a) =

√
ωcut

2α
= ln (SNR) /a (12)

Like in Eq. 9 the resolution δr (a) is taken as the distance between the zero points of the
reconstructed signal Tr (a), which is the wavelength corresponding to the wavenumber
k(a),

δr (a) = 2π

k (a)
= 2π

a

ln SNR
, (13)

which is proportional to the depth a and independent from the thermal diffusivity α.
The resolution is proportional to the thermal diffusion length at the cut-off frequency.

This is not only the limit for the depth resolution, but also for the lateral resolution
as can be estimated by using the formula for the Abbe diffraction limit δAbbe =
λ/ (2 sin (θ)). The minimal wavelength λ = 2π

√
2α/ωcut of the thermal wave as a

certain point at the surface is now a function of the angle θ , as the path d at a certain
angle θ is stretched to a = d/cos (θ) (Fig. 2). This reduces the cut-off frequency ωcut
by a factor of cos (θ)2, which gives for the Abbe limit,

δAbbe (θ) = λ

2 sin (θ)
= πa

ln(SNR) sin (θ)
= πd

ln(SNR) sin (θ) cos (θ)
. (14)

Fig. 2 Thermal waves which do
not go directly to the surface but
at an angle θ have a longer path
a and therefore their minimal
wavelength which can be
detected on the surface is
increased by a factor 1/cos (θ)

Surface
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The term sin (θ) cos (θ) is maximal for a value of θ = 45◦, where its value is 1/2:

δAbbe
(
θ = 45◦) = 2π

d

ln SNR
(15)

This expression for the lateral resolution is the same as given in (13) for the depth
resolution. The detection circle at the surface has a radius of d. At a higher distance
from the center (θ > 45◦), the resolution is cut because of diffusion. Compared to
optics, the influence of the minimal wavelength varying with θ on the Abbe resolution
limit is not fully clear. This might result in a better resolution as estimated in (15); see
also the discussion in Sect. 4.

4 Discussion, Conclusions and Outlook

Equations 13 and 15 are the main result of this work. For thermographic depth pro-
filing, the axial and the lateral resolution are proportional to the depth and inversely
proportional to the natural logarithm of the signal-to-noise ratio. The resolution does
not depend on the thermal diffusivity α. This result could be derived from the diffusion
equation by using a delta-source at a certain depth and setting the entropy production
caused by thermal diffusion equal to the information loss. The delta-source in space
as a point source is used to be sure to have a smaller structure than the blurring from
image resolution. The derived resolution is valid for any initial temperature profile
as the heat diffusion equation is a linear one. No specific model about the stochastic
process of the fluctuations and about the distribution densities around the mean values
was necessary to get this result. In earlier work [9] we derived Eq.9 by assuming
that the thermal diffusion in k-space is a special Gauss–Markov process (Ornstein–
Uhlenbeck process). The same result in k-space was derived in [7] by choosing for the
Thikonov regularization the regularization parameter equal to the inverse signal-to-
noise ratio, which was justified by the “L-curve” method. In the present publication,
e.g., the cut-off wavenumber kcut in Eq. 7 was derived by using a recently gained
thermodynamic result: that the mean entropy production is equal to the information
loss. In comparison to previous publications on photothermal depth profiling, e.g., by
Li Voti [10], the groups of Salazar [14], orMajaron et al. [15], where the L-curve or the
Morozov discrepancy principle was used to determine the regularization parameters,
we could derive a principle limit from thermodynamics and no additional assumption
for regularization or of a specific model for the stochastic process was necessary.

This result is consistent with work about interference of thermal waves [16]. The
wavenumber for a thermal wave with frequencyω is

√
ω/2α, which is the inverse ther-

mal diffusion length (e.g., [1]). Using the frequency ωcut from Eq. 11 the wavelength
corresponding to this wavenumber is just the resolution in Eq. 13. Also experimen-
tal results indicate the linear relation between depth and resolution, e.g., in [15]. In
the derivation of Eq.15, using the formula for the optical Abbe diffraction limit, the
minimal wavelength varies with the aperture-angle. This is different to optics, where
the whole aperture has the same wavelength. Therefore, the resolution given in Eq. 15
might be an upper limit. This has to be verified by additional two- or three-dimensional
models and simulations.
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For future work instead of a short kick also other excitation patterns can be consid-
ered to evaluate the resolution limits. Busse used a phase angle measurement with a
sinusoidal excitation in lock-in thermography to get a better resolution in depth [17].
Sreekumar and Mandelis proposed a chirped excitation pattern like in radar technol-
ogy to get a better spatial resolution at a certain depth [18]. Using the mean entropy
production it should be possible to give also thermodynamic resolution limits for
those excitation patterns and compare them to resolution limits for single short pulse
excitation. Different and more realistic boundary conditions for the surface should
be implemented (e.g., third kind in [3]) to be comparable to experimental results.
First results for such a third kind boundary condition are given in [7], where we have
heated a metal foil embedded in epoxy resin by a short eddy current pulse. Instead of
the k-space, where the eigenfunctions are, e.g., cosine-functions, new base functions
fn were used (mathematically the same functions as in quantum physics for the finite
potential well, e.g., Griffiths [19]).
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5 Appendix

To show the equality of information loss and entropy production for the kicked process
we follow the derivation of Kawai et al. [20] and Gomez-Marin et al. [21] in spirit
to that of the Jarzynski [22] and Crooks [23,24] equalities, but instead of varying a
control parameter λ from an initial value to a final value along a given protocol as
in [20] we assume to start from a canonical equilibrium state at a temperature T and
“kick” it at time t = 0. We consider a Hamiltonian H (x). x is a point in phase space,
where x = (q, p) represents the set of position and momentum coordinates. Before
the kick the equilibrium probability distribution to observe the state x is given by a
Boltzmann distribution peq (x) = exp (−βH (x)) /Z . Z is the normalization factor
(partition function) andβ := 1/(kBT ). The distribution density just after the short kick
is pkick (x) = peq (x − x0). The applied work W for a kick x0 is H (x + x0) − H (x)
for a phase point x at t = 0. With

eβW = e−βH(x)

e−βH(x+x0)
= peq (x)

peq (x + x0)
(16)

one gets by averaging the logarithm ln of Eq. 16 and substituting x ′ = x + x0,

β〈W 〉eq =
∫

ln

(
peq (x)

peq (x + x0)

)
peq (x) dx

=
∫

ln

(
peq

(
x ′ − x0

)
peq (x ′)

)
peq

(
x ′ − x0

)
dx ′ (17)
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t=0

0

t>0 t ∞

( )

Fig. 3 Illustration of the forward process: a system in equilibrium state peq with mean value at x = 0 is
kicked at a time t = 0 with magnitude x0 to a state pkick far from equilibrium, followed by a dissipative
process back to equilibrium. x is a set of reduced variables which captures the information on the work.
The arrows connecting pkick at time t = 0, pt at t > 0, and peq at t → ∞ indicate the tube of trajectories,
which is “thin” for macroscopic systems as deviations from the mean values x (t) are small

or multiplied by kB and using the definition of the Kullback–Leibler divergence Eq. 1,

Information loss = kBD(pkick||peq) = 〈W 〉eq
T

= 1

T

(〈H〉kick − 〈H〉eq
)

= mean entropy production (18)

In this equation the distribution density pkick is a shifted equilibrium density cor-
responding to a Hamiltonian H (x − x0). The partition function Z is the same for
pkick and peq, therefore �F is zero. More applied work 〈W 〉 in Eq. 18 means that the
distribution pkick just after the kick is “more distant” from the equilibrium distribution
peq. The equilibrium is the state where all the information about the kick is lost and
all the applied work has been dissipated.

A certain time t > 0 after the kick only a part of the appliedwork has been dissipated
and not all the information about the kick magnitude has been lost. To describe a state
at a time t , which is usually not an equilibrium state, it is not necessary to know pt
for all microscopic variables, but x as a set of reduced variables which captures the
information on the work is sufficient. In Fig. 3 the forward process is illustrated and the
distributions are sketched. We propose that Eq. 18 can be written in a time-dependent
form for all the intermediate non-equilibrium states after the kick with a distribution
density pt in a good approximation.

Using the definition of the Kullback–Leibler divergence D and peq (x) =
exp (−βH (x)) /Z , one gets

Information loss = kB�D := kB(D(pkick||peq) − D(pt ||peq))
= �S + 1

T

(〈H〉kick − 〈H〉pt
) = mean entropy production.

(19)
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The entropy production is the total entropy change �S minus the entropy flow, which
is the negative of the dissipated heat 〈H〉kick −〈H〉pt divided by the temperature. The
total entropy change �S ≡ S (t) − Skick is the difference in the Shannon entropy of
pt and pkick:

S (t) := −kB

∫
pt (x) ln (pt (x)) dx . (20)

As pkick is only a “shifted” equilibrium distribution peq, the two distributions have
the same entropy: Skick = Seq. Equation19 can be also deduced directly from Eq.12
given by Esposito and Van den Broeck in [13] by taking a time-invariant equilibrium
distribution. Then Wirr = 0, which is the sum of the entropy production �i S =
�S − Q/T and the information �I = −kB�D. Q is the heat coming from the heat
bath, in our case the negative of the dissipated heat 〈H〉kick − 〈H〉pt .

Equation19 describes that the information �I about the kick magnitude decreases
and the information loss increases during the evolution of time and is equal to the
mean dissipated work divided by the temperature plus the entropy change �S. After a
long time t the distribution pt converges to the equilibrium distribution peq and from
Eq.19 one gets Eq. 18 using �S = Seq − Skick = 0. This is also true in the linear
regime near equilibrium as the shape of the distribution pt and therefore S (t) does
not change and is equal to Seq. But also far from equilibrium in a good approximation
for all the intermediate states �S � 1/T

(〈H〉kick − 〈H〉pt
)
, as for a macroscopic

system fluctuations are small compared to the mean value (see Fig. 3 showing a “thin”
tube of trajectories). Then the distribution pt has nearly no overlap with peq and one
gets

D(pt ||peq) =
∫

pt lnptdx −
∫

pt lnpeqdx ≈ −
∫

pt lnpeqdx = β〈H〉pt + lnZ .

(21)
The entropy term pt ln pt in Eq. 21 can be neglected because for all regions in the

phase space where pt is different from zero and which contribute to the integral, peq
is nearly zero and ln pt can be neglected compared to ln peq. The same approximation
in (21) is valid for pt = pkick and therefore the total entropy change �S in Eq. 19 can
be neglected:

kB(D(pkick||peq) − D(pt ||peq)) ≈ 1

T

(〈H〉kick − 〈H〉pt
)
. (22)

Subtracting Eq. 22 from Eq. 18 one gets for the information I (t) about the kick
magnitude:

I (t) = kBD(pt ||peq) ≈ 1

T

(〈H〉pt − 〈H〉eq
) ≈ 1

T

(
H (x (t)) − H (x = 0)

)
, (23)

I (t) can be identified as the amount of information that needs to be processed to
switch from the known equilibrium distribution peq (no kick) to the distribution pt a
time t after the kick [8]. All the information about the kick can be approximated by the
mean work, which has not been dissipated yet, divided by the temperature. This is the
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entropy production according to heat diffusion. After a long time all the energy has
been dissipated and no information about the kick magnitude is available. The second
approximation in Eq. 23 uses that for a macroscopic system the fluctuations are small
and the mean of the Hamiltonian is approximately the Hamiltonian of the mean value
x (t) (Fig. 3).

References

1. A. Rosencwaig, Non-destructive evaluation, in Progress in Photothermal and Photoacoustic Science
and Technology, ed. by A. Mandelis (Elsevier, New York, 1992)

2. S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (Dover Publications, New York, 1984)
3. A. Mandelis, Diffusion-Wave Fields: Mathematical Methods and Green Functions (Springer, New

York, 2001)
4. J. Hadamard, Sur les problèmes aux dérivés partielles et leur signification physique. Princet. Univ.

Bull. 13, 49 (1902)
5. C.W. Groetsch, Inverse Problems in the Mathematical Sciences (Vieweg, Braunschweig, 1993)
6. P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion

(SIAM, Philadelphia, 1987)
7. P. Burgholzer, F. Camacho-Gonzales, D. Sponseiler, G. Mayer, G. Hendorfer, Information changes

and time reversal for diffusion-related periodic fields, in Biomedical Optics: Photons Plus Ultrasound:
Imaging and Sensing, SPIE (2009), pp. 7177–76

8. T.M. Cover, J.A. Thomas, Elements of Information Theory, 2nd edn. (Wiley, New York, 2006)
9. P. Burgholzer, G. Hendorfer, Int. J. Thermophys. 34, 1617 (2013)

10. R. Li Voti, C. Sibilia, M. Bertolotti, Int. J. Thermophys. 26, 1833 (2005)
11. H.H. Hasegawa, J. Ishikawa, K. Takara, D.J. Driebe, Phys. Lett. A 374, 1001 (2010)
12. K. Takara, H.H. Hasegawa, D.J. Driebe, Phy. Lett. A 375, 88 (2010)
13. M. Esposito, C. Van den Broeck, Europhys. Lett. 95, 40004 (2011)
14. E. Apinaniz, A. Mendioroz, A. Salazar, R. Celorrio, J. Appl. Phys. 108, 064905 (2010)
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