279 research outputs found

    Newly Discovered RR Lyrae Stars in the SDSSXPanXSTARRS1XCatalina Footprint

    Full text link
    We present the detection of 6,371 RR Lyrae (RRL) stars distributed across ~14,000 deg^2 of the sky from the combined data of the Sloan Digital Sky Survey (SDSS), the Panoramic Survey Telescope and Rapid Response System 1 (PS1), and the second photometric catalogue from the Catalina Survey (CSDR2), out of these, ~2,021 RRL stars (~572 RRab and 1,449 RRc) are new discoveries. The RRL stars have heliocentric distances in the 4--28 kpc distance range. RRL-like color cuts from the SDSS and variability cuts from the PS1 are used to cull our candidate list. We then use the CSDR2 multi-epoch data to refine our sample. Periods were measured using the Analysis of Variance technique while the classification process is performed with the Template Fitting Method in addition to the visual inspection of the light curves. A cross-match of our RRL star discoveries with previous published catalogs of RRL stars yield completeness levels of ~50% for both RRab and RRc stars, and an efficiency of ~99% and ~87% for RRab and RRc stars, respectively. We show that our method for selecting RRL stars allows us to recover halo structures. The full lists of all the RRL stars are made publicly available.Comment: 14 pages, 11 figures. Accepted 2014 March 30. Received 2014 March 12; in original form 2013 November 2

    Brown Dwarfs in Young Moving Groups from Pan-STARRS1. I. AB Doradus

    Full text link
    Substellar members of young (≲\lesssim150 Myr) moving groups are valuable benchmarks to empirically define brown dwarf evolution with age and to study the low-mass end of the initial mass function. We have combined Pan-STARRS1 (PS1) proper motions with optical−-IR photometry from PS1, 2MASS and WISE\textit{WISE} to search for substellar members of the AB Dor Moving Group within ≈\approx50 pc and with spectral types of late-M to early-L, corresponding to masses down to ≈\approx30 MJup_{Jup} at the age of the group (≈\approx125 Myr). Including both photometry and proper motions allows us to better select candidates by excluding field dwarfs whose colors are similar to young AB~Dor Moving Group members. Our near-IR spectroscopy has identified six ultracool dwarfs (M6−-L4; ≈\approx30−-100 MJup_{Jup}) with intermediate surface gravities (INT-G) as candidate members of the AB Dor Moving Group. We find another two candidate members with spectra showing hints of youth but consistent with field gravities. We also find four field brown dwarfs unassociated with the AB Dor Moving Group, three of which have INT-G gravity classification. While signatures of youth are present in the spectra of our ≈\approx125 Myr objects, neither their J−KJ-K nor W1−W2W1-W2 colors are significantly redder than field dwarfs with the same spectral types, unlike younger ultracool dwarfs. We also determined PS1 parallaxes for eight of our candidates and one previously identified AB Dor Moving Group candidate. Although radial velocities (and parallaxes, for some) are still needed to fully assess membership, these new objects provide valuable insight into the spectral characteristics and evolution of young brown dwarfs.Comment: ApJ, accepte

    Observational Constraints on the Catastrophic Disruption Rate of Small Main Belt Asteroids

    Full text link
    We have calculated 90% confidence limits on the steady-state rate of catastrophic disruptions of main belt asteroids in terms of the absolute magnitude at which one catastrophic disruption occurs per year (HCL) as a function of the post-disruption increase in brightness (delta m) and subsequent brightness decay rate (tau). The confidence limits were calculated using the brightest unknown main belt asteroid (V = 18.5) detected with the Pan-STARRS1 (Pan-STARRS1) telescope. We measured the Pan-STARRS1's catastrophic disruption detection efficiency over a 453-day interval using the Pan-STARRS moving object processing system (MOPS) and a simple model for the catastrophic disruption event's photometric behavior in a small aperture centered on the catastrophic disruption event. Our simplistic catastrophic disruption model suggests that delta m = 20 mag and 0.01 mag d-1 < tau < 0.1 mag d-1 which would imply that H0 = 28 -- strongly inconsistent with H0,B2005 = 23.26 +/- 0.02 predicted by Bottke et al. (2005) using purely collisional models. We postulate that the solution to the discrepancy is that > 99% of main belt catastrophic disruptions in the size range to which this study was sensitive (100 m) are not impact-generated, but are instead due to fainter rotational breakups, of which the recent discoveries of disrupted asteroids P/2013 P5 and P/2013 R3 are probable examples. We estimate that current and upcoming asteroid surveys may discover up to 10 catastrophic disruptions/year brighter than V = 18.5.Comment: 61 Pages, 10 Figures, 3 Table

    Zooming In on the Progenitors of Superluminous Supernovae With the HST

    Full text link
    We present Hubble Space Telescope (HST) rest-frame ultraviolet imaging of the host galaxies of 16 hydrogen-poor superluminous supernovae (SLSNe), including 11 events from the Pan-STARRS Medium Deep Survey. Taking advantage of the superb angular resolution of HST, we characterize the galaxies' morphological properties, sizes and star formation rate (SFR) densities. We determine the supernova (SN) locations within the host galaxies through precise astrometric matching, and measure physical and host-normalized offsets, as well as the SN positions within the cumulative distribution of UV light pixel brightness. We find that the host galaxies of H-poor SLSNe are irregular, compact dwarf galaxies, with a median half-light radius of just 0.9 kpc. The UV-derived SFR densities are high ( ~ 0.1 M_sun/yr/kpc^2), suggesting that SLSNe form in overdense environments. Their locations trace the UV light of their host galaxies, with a distribution intermediate between that of long-duration gamma-ray bursts (LGRBs) (which are strongly clustered on the brightest regions of their hosts) and a uniform distribution (characteristic of normal core-collapse SNe), though cannot be statistically distinguished from either with the current sample size. Taken together, this strengthens the picture that SLSN progenitors require different conditions than those of ordinary core-collapse SNe to form, and that they explode in broadly similar galaxies as do LGRBs. If the tendency for SLSNe to be less clustered on the brightest regions than are LGRBs is confirmed by a larger sample, this would indicate a different, potentially lower-mass progenitor for SLSNe than LRGBs.Comment: ApJ in press; matches published version. Minor changes following referee's comments; conclusions unchange
    • …
    corecore