8,971 research outputs found

    String Inflation After Planck 2013

    Full text link
    We briefly summarize the impact of the recent Planck measurements for string inflationary models, and outline what might be expected to be learned in the near future from the expected improvement in sensitivity to the primordial tensor-to-scalar ratio. We comment on whether these models provide sufficient added value to compensate for their complexity, and ask how they fare in the face of the new constraints on non-gaussianity and dark radiation. We argue that as a group the predictions made before Planck agree well with what has been seen, and draw conclusions from this about what is likely to mean as sensitivity to primordial gravitational waves improves.Comment: LaTeX, 21 pages plus references; slight modification of the discussion of inflection point inflation, references added and typos correcte

    ON GAUGINO CONDENSATION WITH FIELD-DEPENDENT GAUGE COUPLINGS

    Get PDF
    We study in detail gaugino condensation in globally and locally supersymmetric Yang-Mills theories. We focus on models for which gauge-neutral matter couples to the gauge bosons only through nonminimal gauge kinetic terms, for the cases of one and several condensing gauge groups. Using only symmetry arguments, the low-energy expansion, and general properties of supersymmetry, we compute the low energy Wilson action, as well as the (2PI) effective action for the composite {\it classical} superfield U\equiv\langle \Tr\WW \rangle, with WαW_\alpha the supersymmetric gauge field strength. The 2PI effective action provides a firmer foundation for the approach of Veneziano and Yankielowicz, who treated the composite superfield, UU, as a quantum degree of freedom. We show how to rederive the Wilson action by minimizing the 2PI action with respect to UU. We determine, in both formulations and for global and local supersymmetry, the effective superpotential, WW, the non-perturbative contributions to the low-energy K\"ahler potential KK, and the leading higher supercovariant derivative terms in an expansion in inverse powers of the condensation scale. As an application of our results we include the string moduli dependence of the super- and K\"ahler potentials for simple orbifold models.Comment: 54 pages, plain te

    De Sitter String Vacua from Dilaton-dependent Non-perturbative Effects

    Full text link
    We consider a novel scenario for modulus stabilisation in IIB string compactifications in which the Kahler moduli are stabilised by a general set-up with two kinds of non-perturbative effects: (i) standard Kahler moduli-dependent non-perturbative effects from gaugino condensation on D7-branes or E3-instantons wrapping four-cycles in the geometric regime; (ii) dilaton-dependent non-perturbative effects from gaugino condensation on space-time filling D3-branes or E(-1)-instantons at singularities. For the LARGE Volume Scenario (LVS), the new dilaton-dependent non-perturbative effects provide a positive definite contribution to the scalar potential that can be arbitrarily tuned from fluxes to give rise to de Sitter vacua. Contrary to anti D3-branes at warped throats, this term arises from a manifestly supersymmetric effective action. In this new scenario the "uplifting" term comes from F-terms of blow-up modes resolving the singularity of the non-perturbative quiver. We discuss phenomenological and cosmological implications of this mechanism. This set-up also allows a realisation of the LVS for manifolds with zero or positive Euler number.Comment: 22 pages + two appendices, typos correcte

    Inflating with Large Effective Fields

    Full text link
    We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset G/HG/H (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple {\em large-field} power laws (like Vϕ2V \propto \phi^2) and exponential potentials, V(ϕ)=kVk  ekϕ/MV(\phi) = \sum_{k} V_k \; e^{-k \phi/M}. Both of these can describe the data well and give slow-roll inflation for large fields without the need for a precise balancing of terms in the potential. The exponential potentials achieve large rr through the limit ηϵ|\eta| \ll \epsilon and so predict r83(1ns)r \simeq \frac83(1-n_s); consequently ns0.96n_s \simeq 0.96 gives r0.11r \simeq 0.11 but not much larger (and so could be ruled out as measurements on rr and nsn_s improve). We examine the naturalness issues for these models and give simple examples where symmetries protect these forms, using both pseudo-Goldstone inflatons (with non-abelian non-compact shift symmetries following familiar techniques from chiral perturbation theory) and extra-dimensional models.Comment: 21 pages + appendices, 3 figure

    On the Naturalness of Higgs Inflation

    Full text link
    We critically examine the recent claim that the Standard Model Higgs boson H{\cal H} could drive inflation in agreement with observations if H2|{\cal H}|^2 has a strong coupling ξ104\xi\sim 10^4 to the Ricci curvature scalar. We first show that the effective theory approach upon which that claim is based ceases to be valid beyond a cutoff scale Λ=mp/ξ\Lambda=m_p/\xi, where mpm_p is the reduced Planck mass. We then argue that knowing the Higgs potential profile for the field values relevant for inflation (H>mp/ξΛ|{\cal H}|>m_p/\sqrt{\xi}\gg \Lambda) requires knowledge of the ultraviolet completion of the SM beyond Λ\Lambda. In absence of such microscopic theory, the extrapolation of the pure SM potential beyond Λ\Lambda is unwarranted and the scenario is akin to other ad-hoc inflaton potentials afflicted with significant fine-tuning. The appealing naturalness of this minimal proposal is therefore lost.Comment: 9 pages. Replaced with published version, plus a footnote clarifying the use of power counting estimate

    Modulated Reheating and Large Non-Gaussianity in String Cosmology

    Get PDF
    A generic feature of the known string inflationary models is that the same physics that makes the inflaton lighter than the Hubble scale during inflation often also makes other scalars this light. These scalars can acquire isocurvature fluctuations during inflation, and given that their VEVs determine the mass spectrum and the coupling constants of the effective low-energy field theory, these fluctuations give rise to couplings and masses that are modulated from one Hubble patch to another. These seem just what is required to obtain primordial adiabatic fluctuations through conversion into density perturbations through the `modulation mechanism', wherein reheating takes place with different efficiency in different regions of our Universe. Fluctuations generated in this way can generically produce non-gaussianity larger than obtained in single-field slow-roll inflation; potentially observable in the near future. We provide here the first explicit example of the modulation mechanism at work in string cosmology, within the framework of LARGE Volume Type-IIB string flux compactifications. The inflationary dynamics involves two light Kaehler moduli: a fibre divisor plays the role of the inflaton whose decay rate to visible sector degrees of freedom is modulated by the primordial fluctuations of a blow-up mode (which is made light by the use of poly-instanton corrections). We find the challenges of embedding the mechanism into a concrete UV completion constrains the properties of the non-gaussianity that is found, since for generic values of the underlying parameters, the model predicts a local bi-spectrum with fNL of order `a few'. However, a moderate tuning of the parameters gives also rise to explicit examples with fNL O(20) potentially observable by the Planck satellite.Comment: 42 pages, 2 figure
    corecore