7,777 research outputs found

    Modulated Reheating and Large Non-Gaussianity in String Cosmology

    Get PDF
    A generic feature of the known string inflationary models is that the same physics that makes the inflaton lighter than the Hubble scale during inflation often also makes other scalars this light. These scalars can acquire isocurvature fluctuations during inflation, and given that their VEVs determine the mass spectrum and the coupling constants of the effective low-energy field theory, these fluctuations give rise to couplings and masses that are modulated from one Hubble patch to another. These seem just what is required to obtain primordial adiabatic fluctuations through conversion into density perturbations through the `modulation mechanism', wherein reheating takes place with different efficiency in different regions of our Universe. Fluctuations generated in this way can generically produce non-gaussianity larger than obtained in single-field slow-roll inflation; potentially observable in the near future. We provide here the first explicit example of the modulation mechanism at work in string cosmology, within the framework of LARGE Volume Type-IIB string flux compactifications. The inflationary dynamics involves two light Kaehler moduli: a fibre divisor plays the role of the inflaton whose decay rate to visible sector degrees of freedom is modulated by the primordial fluctuations of a blow-up mode (which is made light by the use of poly-instanton corrections). We find the challenges of embedding the mechanism into a concrete UV completion constrains the properties of the non-gaussianity that is found, since for generic values of the underlying parameters, the model predicts a local bi-spectrum with fNL of order `a few'. However, a moderate tuning of the parameters gives also rise to explicit examples with fNL O(20) potentially observable by the Planck satellite.Comment: 42 pages, 2 figure

    Consequences of Zeeman Degeneracy for van der Waals Blockade between Rydberg Atoms

    Full text link
    We analyze the effects of Zeeman degeneracies on the long-range interactions between like Rydberg atoms, with particular emphasis on applications to quantum information processing using van der Waals blockade. We present a general analysis of how degeneracies affect the primary error sources in blockade experiments, emphasizing that blockade errors are sensitive primarily to the weakest possible atom-atom interactions between the degenerate states, not the mean interaction strength. We present explicit calculations of the van der Waals potentials in the limit where the fine-structure interaction is large compared to the atom-atom interactions. The results are presented for all potential angular momentum channels invoving s, p, and d states. For most channels there are one or more combinations of Zeeman levels that have extremely small dipole-dipole interactions and are therefore poor candidates for effective blockade experiments. Channels with promising properties are identified and discussed. We also present numerical calculations of Rb and Cs dipole matrix elements and relevant energy levels using quantum defect theory, allowing for convenient quantitative estimates of the van der Waals interactions to be made for principal quantum numbers up to 100. Finally, we combine the blockade and van der Waals results to quantitatively analyze the angular distribution of the blockade shift and its consequence for angular momentum channels and geometries of particular interest for blockade experiments with Rb.Comment: 16 figure

    Coriolis force corrections to g-mode spectrum in 1D MHD model

    Get PDF
    The corrections to g-mode frequencies caused by the presence of a central magnetic field and rotation of the Sun are calculated. The calculations are carried out in the simple one dimensional magnetohydrodynamical model using the approximations which allow one to find the purely analytical spectra of magneto-gravity waves beyond the scope of the JWKB approximation and avoid in a small background magnetic field the appearance of the cusp resonance which locks a wave within the radiative zone. These analytic results are compared with the satellite observations of the g-mode frequency shifts which are of the order one per cent as given in the GOLF experiment at the SoHO board. The main contribution turns out to be the magnetic frequency shift in the strong magnetic field which obeys the used approximations. In particular, the fixed magnetic field strength 700 KG results in the mentioned value of the frequency shift for the g-mode of the radial order n=-10. The rotational shift due to the Coriolis force appears to be small and does not exceed a fracton of per cent, \alpha_\Omega < 0.003.Comment: RevTeX4, 9 pages, 4 eps figures; accepted for publication in Astronomy Reports (Astronomicheskii Zhurnal

    Brane-Antibrane Backreaction in Axion Monodromy Inflation

    Full text link
    We calculate the interaction potential between D5 and anti-D5 branes wrapping distant but homologous 2-cycles. The interaction potential is logarithmic in the separation radius and does not decouple at infinity. We show that logarithmic backreaction is generic for 5-branes wrapping distant but homologous 2-cycles, and we argue that this destabilises models of axion monodromy inflation involving NS5 brane-antibrane pairs in separate warped throats towards an uncontrolled region.Comment: 12 page

    Footballs, Conical Singularities and the Liouville Equation

    Full text link
    We generalize the football shaped extra dimensions scenario to an arbitrary number of branes. The problem is related to the solution of the Liouville equation with singularities and explicit solutions are presented for the case of three branes. The tensions of the branes do not need to be tuned with each other but only satisfy mild global constraints.Comment: 15 pages, Refs. added, minor changes. Typo in eq. 4.3 corrected. Version to be published in PR

    Volume stabilization in a warped flux compactification model

    Get PDF
    We investigate the stability of the extra dimensions in a warped, codimension two braneworld that is based upon an Einstein-Maxwell-dilaton theory with a non-vanishing scalar field potential. The braneworld solution has two 3-branes, which are located at the positions of the conical singularities. For this type of brane solution the relative positions of the branes (the shape modulus) is determined via the tension-deficit relations, if the brane tensions are fixed. However, the volume of the extra dimensions (the volume modulus) is not fixed in the context of the classical theory, implying we should take quantum corrections into account. Hence, we discuss the one-loop effective potential of the volume modulus for a massless, minimally coupled scalar field.Comment: 25 pages, 8 figures, typos correcte

    Forbidden Transitions in a Magneto-Optical Trap

    Full text link
    We report the first observation of a non-dipole transition in an ultra-cold atomic vapor. We excite the 3P-4P electric quadrupole (E2) transition in 23^{23}Na confined in a Magneto-Optical Trap(MOT), and demonstrate its application to high-resolution spectroscopy by making the first measurement of the hyperfine structure of the 4P1/2_{1/2} level and extracting the magnetic dipole constant A == 30.6 ±\pm 0.1 MHz. We use cw OODR (Optical-Optical Double Resonance) accompanied by photoinization to probe the transition

    Scaling Solutions to 6D Gauged Chiral Supergravity

    Get PDF
    We construct explicitly time-dependent exact solutions to the field equations of 6D gauged chiral supergravity, compactified to 4D in the presence of up to two 3-branes situated within the extra dimensions. The solutions we find are scaling solutions, and are plausibly attractors which represent the late-time evolution of a broad class of initial conditions. By matching their near-brane boundary conditions to physical brane properties we argue that these solutions (together with the known maximally-symmetric solutions and a new class of non-Lorentz-invariant static solutions, which we also present here) describe the bulk geometry between a pair of 3-branes with non-trivial on-brane equations of state.Comment: Contribution to the New Journal of Physics focus issue on Dark Energy; 28 page

    Neutrino Oscillations, Fluctuations and Solar Magneto-gravity Waves

    Full text link
    This review has two parts. The first part summarizes the current observational constraints on fluctuations in the solar medium deep within the solar Radiative Zone, and shows how the KamLAND and SNO-salt data combine to make the experimental determination of the neutrino oscillation parameters largely insensitive to prior assumptions about the nature of these oscillations. As part of a search for plausible sources of solar fluctuations to which neutrinos could be sensitive, the second part of the talk summarizes a preliminary analysis of the influence of magnetic fields on helioseismic waves. Using simplifying assumptions which should apply to modes in the solar radiative zone, we find a resonance between Alfven waves and helioseismic g-modes which potentially modifies the solar density profile fairly significantly over comparatively short distance scales, too narrow to be ruled out by present-day analyses of p-wave helioseismic spectra.Comment: Plenary talk presented at AHEP 2003, Valencia, Spain, October 200
    corecore